Topics for Projects Algorithmic Problems Around the Web #1

Yury Lifshits http://yury.name

CalTech, Fall'07, CS101.2, http://yury.name/algoweb.html

1 Administrative Staff / Idea of the Course

Administrative Staff / Idea of the Course

Challenges in Web Technologies 2

Administrative Staff / Idea of the Course

Challenges in Web Technologies 2

Existing Theory: Nearest Neighbors 3

Administrative Staff / Idea of the Course

Challenges in Web Technologies 2

Existing Theory: Nearest Neighbors 3

4 List of Project Topics

Part I Administrative Staff Idea of the Course

About Instructor

- Web: http://yury.name
- Mail: yury@caltech.edu
- Cell phone: 1.626.463.3668
- Office: Moore 311, 1.626.395.3863
- Facebook: search "Yury Lifshits"
- Special page: http://simsearch.yury.name

Registration Policy

You can

- Join at any time
- Leave at any time
- Attend "just for fun"

Registration Policy

You can

- Join at any time
- Leave at any time
- Attend "just for fun"

Give me your name, email and current status if you want to be informed about all course-related events

Grading Policy (Updated)

- 20% Problem Setting / Literature Review Short seminar talk at the end
- 40% Work on Project
- 40% Results Presentation
 Seminar talk at the end

Feedback / Promotion

- Please report me my mistakes Slides, English, etc...
- Any ideas how to improve the course?
- Is the time slot MW 11-12 ok? Any better option?
- Tell your friends about this course
- Give me a hyperlink

Course Philosophy

Challenges in Web Technologies

Recs, Ads, Social Networks Existing Theory: Algorithms for Nearest Neighbor Search

Course Philosophy

Challenges in Web Technologies

Recs, Ads, Social Networks Existing Theory:

Algorithms for Nearest Neighbor Search

New Math Problems

New Algorithms

New Experiments

Course Schedule

- 5 more lectures
- 12-14 class hours for seminars
- weekly team meetings

Part II Challenges in Web Technologies

Recommendation Systems

Recommendation systems attempts to present information items (movies, music, books, news, web pages) that are likely of interest to the user

System compares the user's profile to some reference characteristics. These characteristics may be from the information item (the content-based approach) or the user's social environment (the collaborative filtering approach)

Behavioral Targeting

Ad targeting: Ancient: broadcasting Current: contextual Future: behavioral

Behavioral Targeting

Ad targeting: Ancient: broadcasting Current: contextual Future: behavioral

The idea is to observe a users online behavior anonymously and then serve the most relevant advertisement based on their behavior

Personalized News Aggregation

A feed aggregator is a Web application which aggregates syndicated web content such as news headlines, blogs, podcasts, and vlogs in a single location for easy viewing

Personalized News Aggregation

A feed aggregator is a Web application which aggregates syndicated web content such as news headlines, blogs, podcasts, and vlogs in a single location for easy viewing

Challenge: personalized aggregation

Social Networks Analysis

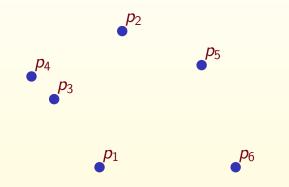
Social network: Nodes Edges

Examples of relations: financial exchange, friends, dislike, conflict, trade, web links, sexual relations, disease transmission, airline routes, etc.

Social Networks Analysis

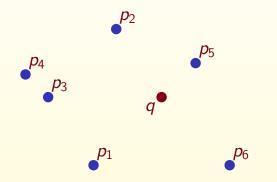
Social network: Nodes Edges

Examples of relations: financial exchange, friends, dislike, conflict, trade, web links, sexual relations, disease transmission, airline routes, etc.

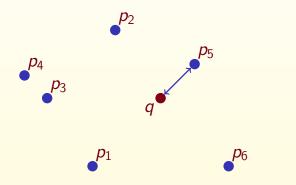

Our focus Community discovery Burst detection Part III Theory of Nearest Neighbors

Nearest Neighbors Informally

To preprocess a database of *n* objects so that given a query object, one can effectively determine its nearest neighbors in database


More Formally

Search space: object domain \mathbb{U} , similarity function σ Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$ Query: $q \in \mathbb{U}$ Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$


More Formally

Search space: object domain \mathbb{U} , similarity function σ Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$ Query: $q \in \mathbb{U}$ Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

More Formally

Search space: object domain \mathbb{U} , similarity function σ Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$ Query: $q \in \mathbb{U}$ Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

Some Solutions for NN Problem

Orchard's Algorithm LAESA Sphere Rectangle Tree k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree R*-tree Burkhard-Keller tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree vp^s-tree M-tree Locality-Sensitive Hashing SS-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree Generalized hyperplane tree Spill Tree Fixed queries tree X-tree k-d Hybrid tree Slim tree tree Balltree Quadtree Octree Post-office tree

Part IV List of Project Topics 5 Theoretical / 4 Experimental

T1 Nearest Neighbors for Sparse Vectors

Database: *n* vectors in \mathbb{R}^m each having at most $k \ll m$ nonzero coordinates

Query: vector in \mathbb{R}^m also having at most $k \ll m$ nonzero coordinates

Similarity: scalar product

T1 Nearest Neighbors for Sparse Vectors

Database: *n* vectors in \mathbb{R}^m each having at most $k \ll m$ nonzero coordinates

Query: vector in \mathbb{R}^m also having at most $k \ll m$ nonzero coordinates

Similarity: scalar product

Is there an algorithm for solving nearest neighbors
 on sparse vectors within following constraints:
 poly(n, m) preprocessing, poly(k, log n, log m) query?

T2 LD Embeddings for Social Networks

Input:

Friendship graph / Co-authorship graph

Similarity:

Number of joint friends Length of shortest path

T2 LD Embeddings for Social Networks

Input:

Friendship graph / Co-authorship graph

Similarity:

Number of joint friends Length of shortest path

How to construct embedding into 2D (Euclidean plane) that put similar people close to each other?

T2 LD Embeddings for Social Networks

Input:

Friendship graph / Co-authorship graph

Similarity:

Number of joint friends Length of shortest path

How to construct embedding into 2D (Euclidean plane) that put similar people close to each other?

Workflow:

Define social network model Define distortion of 2D embedding Find embedding algorithm with least possible distortion

T3 Disorder Method for Nearest Neighbors

Sort all objects in database S by their similarity to p Let $rank_p(s)$ be position of object s in this list

T3 Disorder Method for Nearest Neighbors

Sort all objects in database S by their similarity to p Let $rank_p(s)$ be position of object s in this list

Disorder inequality for some constant *D*:

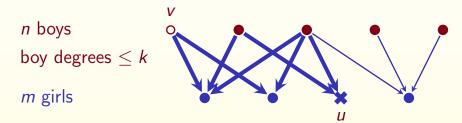
 $\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$

Minimal D providing disorder inequality is called disorder constant of a given set

T3 Disorder Method for Nearest Neighbors

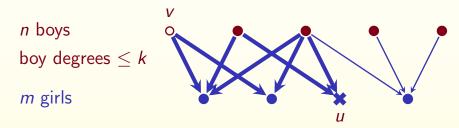
Sort all objects in database S by their similarity to p Let $rank_p(s)$ be position of object s in this list

Disorder inequality for some constant *D*:


 $\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$

Minimal D providing disorder inequality is called disorder constant of a given set

What is the most efficient algorithm for nearest neighbor search in terms of n and D?


T4 3-Step Nearest Neighbors

3-step similarity between boy and girl in some bipartite boys-girls graph is equal to number of paths of length 3 between them

T4 3-Step Nearest Neighbors

3-step similarity between boy and girl in some bipartite boys-girls graph is equal to number of paths of length 3 between them

Construct an algorithm for solving nearest neighbors in bipartite graphs with 3-step similarity Constraints: poly(n, m) preprocessing, $poly(k, \log n, \log m)$ query

T5 Probabilistic Nearest Neighbors

Probabilistic Analysis in a Nutshell

- Define a probability distribution over databases
- Define probability distribution over query objects
- Construct a solution that is efficient/accurate with high probability over "random" input/query

E1 Recommendations for Blog Posts

Available information:

Friendship graph Comments, hyperlinks Keywords of interests, post content

Task: For every user recommend 10 posts from last day that seems to be the most interesting for him/her

Available information:

Click-or-not bipartite graph

Task: Predict click-through rate for given pair "user-ad"

E3 Social Networks Visualization

Input: Friendship graph

Similarity:

Number of joint friends Length of shortest path

E3 Social Networks Visualization

Input: Friendship graph

Similarity:

Number of joint friends Length of shortest path

Task:

Construct embedding into 2D that put similar people close to each other

E4 Disorder Analysis

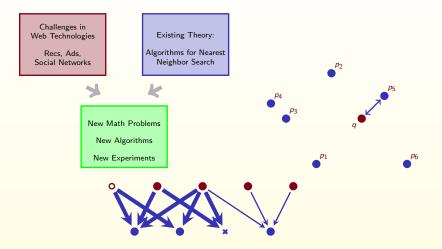
Disorder inequality for some constant *D*:

 $\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$

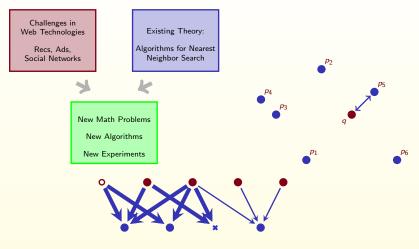
E4 Disorder Analysis

Disorder inequality for some constant *D*:

 $\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$


Tasks:

- Compute disorder values for various datasets
- Implement disorder-based algorithms for NNS
- Study their performance


- Choose a project, form a team
- Make a quick look at corresponding references
- Schedule a meeting with me on this week

- Choose a project, form a team
- Make a quick look at corresponding references
- Schedule a meeting with me on this week
- Recommend this course to friends

Last Slide

Last Slide

Thanks for your attention! Questions?