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Part I

Short Intro to Nearest Neighbors

3 / 30

Problem Statement

Search space: object domain U, similarity function σ

Input: database S = {p1, . . . , pn} ⊆ U
Query: q ∈ U
Task: find argmaxpi

σ(pi , q)

p1

p2

p3

p4
p5

p6

q
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Applications (1/5) Information Retrieval

Content-based retrieval (magnetic resonance
images, tomography, CAD shapes, time series, texts)

Spelling correction

Geographic databases (post-office problem)

Searching for similar DNA sequences

Related pages web search

Semantic search, concept matching
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Applications (2/5) Machine Learning

kNN classification rule: classify by majority of k
nearest training examples. E.g. recognition of faces,
fingerprints, speaker identity, optical characters

Nearest-neighbor interpolation
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Applications (3/5) Data Mining

Near-duplicate detection

Plagiarism detection

Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)

Key difference:
Mostly, off-line problems
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Applications (4/5) Bipartite Problems

Recommendation systems (most relevant movie to a
set of already watched ones)

Personalized news aggregation (most relevant news
articles to a given user’s profile of interests)

Behavioral targeting (most relevant ad for displaying
to a given user)

Key differences:
Query and database objects have different nature
Objects are described by features and connections
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Applications (5/5) As a Subroutine

Coding theory (maximum likelihood decoding)

MPEG compression (searching for similar fragments
in already compressed part)

Clustering
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Variations of the Computation Task
Solution aspects:

Approximate nearest neighbors

Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function

Related problems:

Nearest neighbor: nearest museum to my hotel

Reverse nearest neighbor: all museums for which my hotel is the nearest
one

Range queries: all museums up to 2km from my hotel

Closest pair: closest pair of museum and hotel

Spatial join: pairs of hotels and museums which are at most 1km apart

Multiple nearest neighbors: nearest museums for each of these hotels

Metric facility location: how to build hotels to minimize the sum of
“museum — nearest hotel” distances
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Brief History

1908 Voronoi diagram

1967 kNN classification rule by Cover and Hart

1973 Post-office problem posed by Knuth

1997 The paper by Kleinberg, beginning of provable
upper/lower bounds

2006 Similarity Search book by Zezula, Amato,
Dohnal and Batko

2008 First International Workshop on Similarity
Search. Consider submitting!
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Part II

Branch and Bound Methodology
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General Metric Space

Tell me definition of metric space

M = (U, d), distance function d satisfies:

Non negativity: ∀s, t ∈ U : d(s, t) ≥ 0
Symmetry: ∀s, t ∈ U : d(s, t) = d(t, s)
Identity: d(s, t) = 0 ⇒ s = t
Triangle inequality: ∀r , s, t ∈ U : d(r , t) ≤ d(r , s) + d(s, t)

Basic Examples:

Arbitrary metric space, oracle access to distance function

k-dimensional Euclidean space with Euclidean, weighted
Euclidean, Manhattan or Lp metric

Strings with Hamming or Levenshtein distance
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Metric Spaces: More Examples

Finite sets with Jaccard metric d(A, B) = 1− |A∩B|
|A∪B|

Correlated dimensions: x̄ ·M · ȳ distance

Hausdorff distance for sets

Similarity spaces (no triangle inequality):

Multidimensional vectors with scalar product similarity

Bipartite graph, co-citations similarity for vertices in one part

Social networks with “number of joint friends” similarity
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Branch and Bound: Search Hierarchy

Database S = {p1, . . . , pn}
is represented by a tree:

Every node corresponds to a
subset of S

Root corresponds to S itself

Children’s sets cover parent’s set

Every node contains a
“description” of its subtree
providing easy-computable lower
bound for d(q, ·) in the
corresponding subset

(p1, p2, p3, p4, p5)

(p1, p2, p3) (p4, p5)

(p1, p3) p2 p4 p5

p1p3
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Branch and Bound: Range Search

Task: find all i d(pi , q) ≤ r :

1 Make a depth-first traversal
of search hierarchy

2 At every node compute the
lower bound for its subtree

3 Prune branches with lower
bounds above r

(p1, p2, p3, p4, p5)

(p1, p2, p3) (p4, p5)

(p1, p3) p2 p4 p5

p1p3
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B&B: Nearest Neighbor Search

Task: find argminpi
d(pi , q):

1 Pick a random pi , set pNN := pi , rNN := d(pi , q)

2 Start range search with rNN range

3 Whenever meet p′ such that d(p′, q) < rNN , update
pNN := p′, rNN := d(p′, q)
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B&B: Best Bin First

Task: find argminpi
d(pi , q):

1 Pick a random pi , set pNN := pi , rNN := d(pi , q)

2 Put the root node into inspection queue

3 Every time: take the node with a smallest lower
bound from inspection queue, compute lower
bounds for children subtrees

4 Insert children with lower bound below rNN into
inspection queue; prune other children branches

5 Whenever meet p′ such that d(p′, q) < rNN , update
pNN := p′, rNN := d(p′, q)
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Part III

Vantage-Point Trees and Relatives
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Vantage-Point Partitioning
Uhlmann’91, Yianilos’93:

1 Choose some object p in database (called pivot)

2 Choose partitioning radius rp

3 Put all pi such that d(pi , p) ≤ r into “inner” part, others to
the “outer” part

4 Recursively repeat

p

rp
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Pruning Conditions

For r-range search:
If d(q, p) > rp + r prune the inner branch
If d(q, p) < rp − r prune the outer branch

For rp − r ≤ d(q, p) ≤ rp + r we have to inspect both
branches

p

rp
r

q
p

rp
r

q
p

rp
r

q
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Variations of Vantage-Point Trees

Burkhard-Keller tree: pivot used to divide the
space into m rings Burkhard&Keller’73

MVP-tree: use the same pivot for different nodes
in one level Bozkaya&Ozsoyoglu’97

Post-office tree: use rp + δ for inner branch,
rp − δ for outer branch McNutt’72

p p2p1 p
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Part IV

Generalized Hyperplane Trees and
Relatives
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Generalized Hyperplane Tree

Partitioning technique (Uhlmann’91):

Pick two objects (called pivots) p1 and p2

Put all objects that are closer to p1 than to p2 to
the left branch, others to the right branch

Recursively repeat
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GH-Tree: Pruning Conditions

For r-range search:
If d(q, p1) > d(q, p2) + 2r prune the left branch
If d(q, p1) < d(q, p2)− 2r prune the right branch

For |d(q, p1)− d(q, p2)| ≤ 2r we have to inspect both
branches

p1

p2
q

≥ |d(p1,q)−d(p2,q)|
2
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Bisector trees
Let’s keep the covering radius for p1 and left branch, for p2 and
right branch: useful information for stronger pruning conditions

p1

p2

Variation: monotonous bisector tree (Noltemeier, Verbarg,

Zirkelbach’92) always uses parent pivot as one of two children pivots

Exercise: prove that covering radii are monotonically
decrease in mb-trees
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Geometric Near-Neighbor Access Tree

Brin’95:

Use m pivots

Branch i consists of objects
for which pi is the closest
pivot

Stores minimal and maximal
distances from pivots to all
“brother”-branches
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Exercises

Prove that Jaccard distance d(A, B) = 1− |A∩B|
|A∪B|

satisfies triangle inequality

Prove that covering radii are monotonically decrease in
mb-trees

Construct a database and a set of potential queries in
some multidimensional Euclidean space for which all

described data structures require Ω(n) nearest neighbor
search time
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Highlights

Nearest neighbor search is fundamental for
information retrieval, data mining, machine learning
and recommendation systems

Balls, generalized hyperplanes and Voronoi cells are
used for space partitioning

Depth-first and Best-first strategies are used for
search

Thanks for your attention! Questions?
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