More Branch and Bound Algorithms

Algorithmic Problems Around the Web \#3

Yury Lifshits
http://yury.name

CalTech, Fall'07, CS101.2, http://yury.name/algoweb.html

Outline

(1) Variations of Metric Trees

Outline

(1) Variations of Metric Trees
(2) M -Trees

Outline

(1) Variations of Metric Trees
(2) M -Trees
(3) Branch and Bound for Euclidean Space

Part I

Variations of Metric Trees

Branch and Bound: Range Search

Task: find all $i \quad d\left(p_{i}, q\right) \leq r$:
(3) Make a depth-first traversal of search hierarchy
(3) At every node compute the lower bound for its subtree

- Prune branches with lower bounds above r

Vantage-Point Partitioning

Uhlmann'91, Yianilos'93:
(1) Choose some object p in database (called pivot)
(2) Choose partitioning radius r_{p}
(3) Put all p_{i} such that $d\left(p_{i}, p\right) \leq r$ into "inner" part, others to the "outer" part
(4) Recursively repeat

Vantage-Point Partitioning

Uhlmann'91, Yianilos'93:
(1) Choose some object p in database (called pivot)
(2) Choose partitioning radius r_{p}
(3) Put all p_{i} such that $d\left(p_{i}, p\right) \leq r$ into "inner" part, others to the "outer" part
(9) Recursively repeat

Variations of Vantage-Point Trees

- Burkhard-Keller tree: pivot used to divide the space into m rings Burkhard\&Keller'73
- MVP-tree: use the same pivot for different nodes in one level Bozkaya\&Ozsoyoglu'97
- Post-office tree: use $r_{p}+\delta$ for inner branch, $r_{p}-\delta$ for outer branch McNutt'72

Variations of Vantage-Point Trees

- Burkhard-Keller tree: pivot used to divide the space into m rings Burkhard\&Keller'73
- MVP-tree: use the same pivot for different nodes in one level Bozkaya\&Ozsoyoglu'97
- Post-office tree: use $r_{p}+\delta$ for inner branch, $r_{p}-\delta$ for outer branch McNutt'72

Variations of Vantage-Point Trees

- Burkhard-Keller tree: pivot used to divide the space into m rings Burkhard\&Keller'73
- MVP-tree: use the same pivot for different nodes in one level Bozkaya\&Ozsoyoglu'97
- Post-office tree: use $r_{p}+\delta$ for inner branch, $r_{p}-\delta$ for outer branch McNutt'72

Generalized Hyperplane Tree

Partitioning technique (Uhlmann'91):

- Pick two objects (called pivots) p_{1} and p_{2}
- Put all objects that are closer to p_{1} than to p_{2} to the left branch, others to the right branch
- Recursively repeat

Generalized Hyperplane Tree

Partitioning technique (Uhlmann'91):

- Pick two objects (called pivots) p_{1} and p_{2}
- Put all objects that are closer to p_{1} than to p_{2} to the left branch, others to the right branch
- Recursively repeat

Generalized Hyperplane Tree

Partitioning technique (Uhlmann'91):

- Pick two objects (called pivots) p_{1} and p_{2}
- Put all objects that are closer to p_{1} than to p_{2} to the left branch, others to the right branch
- Recursively repeat

GH-Tree: Pruning Conditions

For r-range search: If $d\left(q, p_{1}\right)>d\left(q, p_{2}\right)+2 r$ prune the left branch If $d\left(q, p_{1}\right)<d\left(q, p_{2}\right)-2 r$ prune the right branch

For $\left|d\left(q, p_{1}\right)-d\left(q, p_{2}\right)\right| \leq 2 r$ we have to inspect both branches

GH-Tree: Pruning Conditions

For r-range search: If $d\left(q, p_{1}\right)>d\left(q, p_{2}\right)+2 r$ prune the left branch If $d\left(q, p_{1}\right)<d\left(q, p_{2}\right)-2 r$ prune the right branch

For $\left|d\left(q, p_{1}\right)-d\left(q, p_{2}\right)\right| \leq 2 r$ we have to inspect both branches

Bisector trees

Let's keep the covering radius for p_{1} and left branch, for p_{2} and right branch: useful information for stronger pruning conditions

Bisector trees

Let's keep the covering radius for p_{1} and left branch, for p_{2} and right branch: useful information for stronger pruning conditions

Variation: monotonous bisector tree (Noltemeier, Verbarg,
Zirkelbach'92) always uses parent pivot as one of two children pivots

Bisector trees

Let's keep the covering radius for p_{1} and left branch, for p_{2} and right branch: useful information for stronger pruning conditions

Variation: monotonous bisector tree (Noltemeier, Verbarg,
Zirkelbach'92) always uses parent pivot as one of two children pivots
Exercise: prove that covering radii are monotonically decrease in mb-trees

Geometric Near-Neighbor Access Tree

Brin'95:

- Use m pivots
- Branch i consists of objects for which p_{i} is the closest pivot
- Stores minimal and maximal distances from pivots to all "brother"-branches

Part II

M-trees

M-tree: Data structure

Ciaccia, Patella, Zezula'97:

- All database objects are stored in leaf nodes (buckets of fixed size)
- Every internal nodes has associated pivot, covering radius and legal range for number of children (e.g. 2-3)
- Usual depth-first or best-first search

M-tree: Data structure

Ciaccia, Patella, Zezula'97:

- All database objects are stored in leaf nodes (buckets of fixed size)
- Every internal nodes has associated pivot, covering radius and legal range for number of children (e.g. 2-3)
- Usual depth-first or best-first search

Special algorithms for insertions and deletions a-la B-tree

M-tree: Insertions

All insertions happen at the leaf nodes:
(1) Choose the leaf node using "minimal expansion of covering radius" principle

M-tree: Insertions

All insertions happen at the leaf nodes:
(1) Choose the leaf node using "minimal expansion of covering radius" principle
(2) If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii

M-tree: Insertions

All insertions happen at the leaf nodes:
(1) Choose the leaf node using "minimal expansion of covering radius" principle
(2) If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii
(3) Otherwise the leaf node is split into two nodes

M-tree: Insertions

All insertions happen at the leaf nodes:
(1) Choose the leaf node using "minimal expansion of covering radius" principle
(2) If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii
(3) Otherwise the leaf node is split into two nodes
(1) Use two pivots generalized hyperplane partitioning

M-tree: Insertions

All insertions happen at the leaf nodes:
(1) Choose the leaf node using "minimal expansion of covering radius" principle
(2) If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii

- Otherwise the leaf node is split into two nodes
(1) Use two pivots generalized hyperplane partitioning
(2) Both pivots are added to the node's parent, which may cause it to be split, and so on

Part III

k-d Trees, R-trees

Advantages of Euclidean Space

- Rich mathematical formalisms for defining a boundary of any set
Examples: rectangles, hyperplanes, polynomial curves
- Easy computation of lower bound on distance between query point and any set boundary
- Easy definable mappings to smaller spaces
$k-d$ Tree
Preprocessing:
Bentley, 1975
Top-down partitioning
On level I : split the current set by hyperplane orthogonal to $/ \bmod k$ axis
k-d Tree
Preprocessing:
Bentley, 1975
Top-down partitioning
On level l : split the current set
by hyperplane orthogonal to $/ \bmod k$ axis
Query processing:
Standard branch and bound
k-d Tree
Preprocessing:
Top-down partitioning
On level I: split the current set
by hyperplane orthogonal to $/ \bmod k$ axis
Query processing:
Standard branch and bound
k-d Tree
Preprocessing:
Top-down partitioning
On level I: split the current set
by hyperplane orthogonal to $/ \bmod k$ axis
Query processing:
Standard branch and bound

k-d Tree
Preprocessing:
Bentley, 1975
Top-down partitioning
On level $/$: split the current set
by hyperplane orthogonal to $/ \bmod k$ axis
Query processing:
Standard branch and bound

R-Tree

Preprocessing:
Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group

R-Tree

Preprocessing:
Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group
Query processing:
Standard branch and bound

R-Tree

Preprocessing:
Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group
Query processing:
Standard branch and bound

Insertions/delitions: similar to M-tree, B-tree

R-Tree

Preprocessing:
Guttman, 1984
Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group
Query processing:
Standard branch and bound
Insertions/delitions: similar to M-tree, B-tree

R-Tree

Preprocessing:
Guttman, 1984
Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group
Query processing:
Standard branch and bound
Insertions/delitions: similar to M-tree, B-tree

R-Tree

Preprocessing:
Guttman, 1984
Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group
Query processing:
Standard branch and bound
Insertions/delitions: similar to M-tree, B-tree

Thanks for your attention! Questions?

References

Course homepage http://yury.name/algoweb.html
P. Zezula, G. Amato, V. Dohnal, M. Batko Similarity Search: The Metric Space Approach. Springer, 2006. http://www.nmis.isti.cnr.it/amato/similarity-search-book/
E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquín Searching in Metric Spaces. ACM Computing Surveys, 2001.
http://www.cs.ust.hk/~1eichen/courses/comp630j/readings/acm-survey/searchinmetric.pdf

曷
G.R. Hjaltason, H. Samet

Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003
http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft_gateway.cfm.pdf

