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Approximate Algorithms

c-Approximate r-range query: if there at least one
p ∈ S : d(q, p) ≤ r return some p′ : d(q, p′) ≤ cr

q

r
cr

c-Approximate nearest neighbor query: return some
p′ ∈ S : d(p′, q) ≤ crNN , where rNN = minp∈S d(p, q)

Today we consider only range queries
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Today’s Focus

Data models:

d -dimensional Euclidean space: Rd

Hamming cube: {0, 1}d with Hamming distance

Our goal: provable performance bounds

Sublinear search time, near-linear preprocessing space

Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing
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Part I

Locality-Sensitive Hashing:

General Scheme
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Definition of LSH

Indyk&Motwani’98

Locality-sensitive hash family H with parameters
(c , r , P1, P2):

If ‖p − q‖ ≤ r then PrH[h(p) = h(q)] ≥ P1

If ‖p − q‖ ≥ cr then PrH[h(p) = h(q)] ≤ P2
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The Power of LSH

Notation: ρ = log(1/P1)
log(1/P2)

< 1

Theorem

Any (c , r , P1, P2)-locality-sensitive hashing leads to an
algorithm for c-approximate r -range search with
(roughly) nρ query time and n1+ρ preprocessing space

Proof in the next four slides
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LSH: Preprocessing

Composite hash function: g(p) =< h1(p), . . . , hk(p) >

Preprocessing with parameters L, k :

1 Choose at random L composite hash functions of k
components each

2 Hash every p ∈ S into buckets g1(p), . . . , gL(p)

Preprocessing space: O(Ln)

8 / 20



LSH: Preprocessing

Composite hash function: g(p) =< h1(p), . . . , hk(p) >

Preprocessing with parameters L, k :

1 Choose at random L composite hash functions of k
components each

2 Hash every p ∈ S into buckets g1(p), . . . , gL(p)

Preprocessing space: O(Ln)

8 / 20



LSH: Search

1 Compute g1(q), . . . , gL(q)

2 Go to corresponding buckets and explicitly check
d(p, q) ≤?cr for every point there

3 Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)
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LSH: Analysis (1/2)

In order to have probability of error at most δ we set k , L
such that

Pk
2 n ≈ 1 L ≈ (1/P1)

k log(1/δ)

Solving these constraints:

k =
log n

log(1/P2)

L = (1/P1)
log n

log(1/P2) log(1/δ) = n
log(1/P1)
log(1/P2) log(1/δ) = nρ log(1/δ)
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LSH: Analysis (2/2)

The expected number of cr -far objects to be tried is
Pk

2 Ln ≈ L

For true r -neighbor the chance to be hashed to the same
bucket as q is at least

1− (1− (1/P1)
k)L ≥ 1− (1/e)

L

(1/P1)k ≥ 1− δ

Preprocessing space O(Ln) ≈ n1+ρ+o(1)

Search O(L) ≈ nρ+o(1)
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Part II

Andoni&Indyk’06 Hashing
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Ball Grids Hashing: Idea

1 Apply low distortion embedding A into
t-dimensional Euclidean space

2 Set up U 4w -step grids of w -radius balls that all
together cover t-dimensional space

3 Hash object p to the id of the first ball covering
A(p)
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BG Hashing: Initialization

Parameters: t = log2/3 n, w = r log1/6 n, U = 2t log t log n

Construct d × t matrix A taking every element at
random from normal distribution N(0, 1√

t
)

For every 1 ≤ i ≤ U choose a random shift
v̄i ∈ [0, 4w ]t
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BG Hashing: Computing

1 Compute p′ = A(p)

2 From i = 1 to U check whether p′ is covered by i -th
grid of balls. If so return i and ball’s center and
stop.

3 If no such ball found return FAIL
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BG Hashing: Analysis

Fact: Probability of ‖Ap−Ap′‖
‖p−p′‖ /∈ [1− ε, 1 + ε] is at most

exp(−ε2t)

Given two points p, s ∈ Rt : ‖p − s‖ = ∆:

Pr [h(p) = h(s)] =
B(p, w) ∩ B(s, w)

B(p, w) ∪ B(s, w)
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BG Hashing: Final Result

3-pages computational proof:

ρ =
log(1/P1)

log(1/P2)
= 1/c2 + o(1)

Theorem (Andoni & Indyk 2006)

Consider c-approximate r -range search in d-dimensional
space. Then for every δ there is a randomized algorithm
with (roughly) n1/c2+o(1) query time and n1+1/c2+o(1)

preprocessing space. For every query this algorithm
answers correctly with probability at least 1− δ
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Future of LSH

Achievements:

Provably sublinear search time

Utilization of low-distortion embedding

Current drawbacks:

Probability of error can not be amplified only in preprocessing
stage, it can not be decreased to 1/n

Asymptotic analysis of power degree: from what place
n1/c2+o(1) is really sublinear?

For nearest neighbor search c = max rNN(q)
rFN(q)

, where rFN(q) is

the farthest neighbor. This might be pretty close to 1
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Exercise

Prove that 2O(t) number of randomly chosen (w , 4w)
ball grids is enough to cover t-dimensional space with

probability 1/2

Thanks for your attention! Questions?
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