Locality-Sensitive Hashing
 Algorithmic Problems Around the Web \#5

Yury Lifshits
http://yury.name

CalTech, Fall'07, CS101.2, http://yury.name/algoweb.html

Outline

(1) General Scheme

Outline

(1) General Scheme
(2) Ball Grids Hashing

Approximate Algorithms

c-Approximate r-range query: if there at least one $p \in S: d(q, p) \leq r$ return some $p^{\prime}: d\left(q, p^{\prime}\right) \leq c r$

Approximate Algorithms

c-Approximate r-range query: if there at least one $p \in S: d(q, p) \leq r$ return some $p^{\prime}: d\left(q, p^{\prime}\right) \leq c r$

c-Approximate nearest neighbor query: return some $p^{\prime} \in S: d\left(p^{\prime}, q\right) \leq c r_{N N}$, where $r_{N N}=\min _{p \in S} d(p, q)$
Today we consider only range queries

Today's Focus

Data models:

- d-dimensional Euclidean space: \mathbb{R}^{d}
- Hamming cube: $\{0,1\}^{d}$ with Hamming distance

Today's Focus

Data models:

- d-dimensional Euclidean space: \mathbb{R}^{d}
- Hamming cube: $\{0,1\}^{d}$ with Hamming distance

Our goal: provable performance bounds

- Sublinear search time, near-linear preprocessing space
- Logarithmic search time, polynomial preprocessing space

Today's Focus

Data models:

- d-dimensional Euclidean space: \mathbb{R}^{d}
- Hamming cube: $\{0,1\}^{d}$ with Hamming distance

Our goal: provable performance bounds

- Sublinear search time, near-linear preprocessing space
- Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor search with logarithmic search and linear preprocessing

Part I

Locality-Sensitive Hashing: General Scheme

Definition of LSH

Indyk\&Motwani'98

Locality-sensitive hash family \mathcal{H} with parameters (c, r, P_{1}, P_{2}):

- If $\|p-q\| \leq r$ then $\operatorname{Pr}_{r_{\mathcal{H}}}[h(p)=h(q)] \geq P_{1}$
- If $\|p-q\| \geq c r$ then $\mathcal{P}_{r_{\mathcal{H}}}[h(p)=h(q)] \leq P_{2}$

The Power of LSH

Notation: $\rho=\frac{\log \left(1 / P_{1}\right)}{\log \left(1 / P_{2}\right)}<1$

Theorem
Any (c, r, P_{1}, P_{2})-locality-sensitive hashing leads to an algorithm for c-approximate r-range search with (roughly) n^{ρ} query time and $n^{1+\rho}$ preprocessing space

The Power of LSH

Notation: $\rho=\frac{\log \left(1 / P_{1}\right)}{\log \left(1 / P_{2}\right)}<1$

Theorem
Any (c, r, P_{1}, P_{2})-locality-sensitive hashing leads to an algorithm for c-approximate r-range search with (roughly) n^{ρ} query time and $n^{1+\rho}$ preprocessing space

Proof in the next four slides

LSH: Preprocessing

Composite hash function: $g(p)=<h_{1}(p), \ldots, h_{k}(p)>$

LSH: Preprocessing

Composite hash function: $g(p)=<h_{1}(p), \ldots, h_{k}(p)>$
Preprocessing with parameters L, k :
(1) Choose at random L composite hash functions of k components each
(2) Hash every $p \in S$ into buckets $g_{1}(p), \ldots, g_{L}(p)$

Preprocessing space: $\mathcal{O}(L n)$

LSH: Search

(1) Compute $g_{1}(q), \ldots, g_{L}(q)$
(2) Go to corresponding buckets and explicitly check $d(p, q) \leq ? c r$ for every point there
(3) Stopping conditions: (1) we found a satisfying object or (2) we tried at least $3 L$ objects

Search time is $\mathcal{O}(L)$

LSH: Analysis (1/2)

In order to have probability of error at most δ we set k, L such that

$$
P_{2}^{k} n \approx 1 \quad L \approx\left(1 / P_{1}\right)^{k} \log (1 / \delta)
$$

LSH: Analysis (1/2)

In order to have probability of error at most δ we set k, L such that

$$
P_{2}^{k} n \approx 1 \quad L \approx\left(1 / P_{1}\right)^{k} \log (1 / \delta)
$$

Solving these constraints:

$$
k=\frac{\log n}{\log \left(1 / P_{2}\right)}
$$

LSH: Analysis (1/2)

In order to have probability of error at most δ we set k, L such that

$$
P_{2}^{k} n \approx 1 \quad L \approx\left(1 / P_{1}\right)^{k} \log (1 / \delta)
$$

Solving these constraints:

$$
\begin{gathered}
k=\frac{\log n}{\log \left(1 / P_{2}\right)} \\
L=\left(1 / P_{1}\right)^{\frac{\log n}{\log \left(1 / P_{2}\right)}} \log (1 / \delta)=n^{\frac{\log \left(1 / P_{1}\right)}{\operatorname{og}\left(1 / P_{2}\right)}} \log (1 / \delta)=n^{\rho} \log (1 / \delta)
\end{gathered}
$$

LSH: Analysis (2/2)

The expected number of $c r$-far objects to be tried is $P_{2}^{k} L n \approx L$

For true r-neighbor the chance to be hashed to the same bucket as q is at least
$1-\left(1-\left(1 / P_{1}\right)^{k}\right)^{L} \geq 1-(1 / e)^{\frac{L}{\left(1 / P_{1}\right)^{k}}} \geq 1-\delta$

LSH: Analysis (2/2)

The expected number of $c r$-far objects to be tried is $P_{2}^{k} L n \approx L$

For true r-neighbor the chance to be hashed to the same bucket as q is at least
$1-\left(1-\left(1 / P_{1}\right)^{k}\right)^{L} \geq 1-(1 / e)^{\frac{L}{\left(1 / P_{1}\right)^{k}}} \geq 1-\delta$
Preprocessing space $\mathcal{O}(L n) \approx n^{1+\rho+o(1)}$
Search $\mathcal{O}(L) \approx n^{\rho+o(1)}$

Part II

Andoni\&Indyk'06 Hashing

Ball Grids Hashing: Idea

(1) Apply low distortion embedding A into t-dimensional Euclidean space

Ball Grids Hashing: Idea

(1) Apply low distortion embedding A into t-dimensional Euclidean space
(2) Set up $U 4 w$-step grids of w-radius balls that all together cover t-dimensional space

Ball Grids Hashing: Idea

(1) Apply low distortion embedding A into t-dimensional Euclidean space
(2) Set up $U 4 w$-step grids of w-radius balls that all together cover t-dimensional space
(3) Hash object p to the id of the first ball covering $A(p)$

BG Hashing: Initialization

Parameters: $t=\log ^{2 / 3} n, w=r \log ^{1 / 6} n, U=2^{t \log t} \log n$

- Construct $d \times t$ matrix A taking every element at random from normal distribution $N\left(0, \frac{1}{\sqrt{t}}\right)$
- For every $1 \leq i \leq U$ choose a random shift $\bar{v}_{i} \in[0,4 w]^{t}$

BG Hashing: Computing

(1) Compute $p^{\prime}=A(p)$
(2) From $i=1$ to U check whether p^{\prime} is covered by i-th grid of balls. If so return i and ball's center and stop.
(3) If no such ball found return FAIL

BG Hashing: Analysis

Fact: Probability of $\frac{\left\|A p-A p^{\prime}\right\|}{\left\|p-p^{\prime}\right\|} \notin[1-\varepsilon, 1+\varepsilon]$ is at most $\exp \left(-\varepsilon^{2} t\right)$

BG Hashing: Analysis

Fact: Probability of $\frac{\left\|A p-A p^{\prime}\right\|}{\left\|p-p^{\prime}\right\|} \notin[1-\varepsilon, 1+\varepsilon]$ is at most $\exp \left(-\varepsilon^{2} t\right)$

Given two points $p, s \in \mathbb{R}^{t}:\|p-s\|=\Delta:$

$$
\operatorname{Pr}[h(p)=h(s)]=\frac{B(p, w) \cap B(s, w)}{B(p, w) \cup B(s, w)}
$$

BG Hashing: Final Result

3-pages computational proof:

$$
\rho=\frac{\log \left(1 / P_{1}\right)}{\log \left(1 / P_{2}\right)}=1 / c^{2}+o(1)
$$

BG Hashing: Final Result

3-pages computational proof:

$$
\rho=\frac{\log \left(1 / P_{1}\right)}{\log \left(1 / P_{2}\right)}=1 / c^{2}+o(1)
$$

Theorem (Andoni \& Indyk 2006)
Consider c-approximate r-range search in d-dimensional space. Then for every δ there is a randomized algorithm with (roughly) $n^{1 / c^{2}+o(1)}$ query time and $n^{1+1 / c^{2}+o(1)}$ preprocessing space. For every query this algorithm answers correctly with probability at least $1-\delta$

Future of LSH

Achievements:

- Provably sublinear search time
- Utilization of low-distortion embedding

Future of LSH

Achievements:

- Provably sublinear search time
- Utilization of low-distortion embedding

Current drawbacks:

- Probability of error can not be amplified only in preprocessing stage, it can not be decreased to $1 / n$
- Asymptotic analysis of power degree: from what place $n^{1 / c^{2}+o(1)}$ is really sublinear?
- For nearest neighbor search $c=\max \frac{r_{N N}(q)}{r_{F N}(q)}$, where $r_{F N}(q)$ is the farthest neighbor. This might be pretty close to 1

Exercise

Prove that $2^{\mathcal{O}(t)}$ number of randomly chosen ($w, 4 w$) ball grids is enough to cover t-dimensional space with probability $1 / 2$

Exercise

Prove that $2^{\mathcal{O}(t)}$ number of randomly chosen ($w, 4 w$) ball grids is enough to cover t-dimensional space with probability $1 / 2$

Thanks for your attention! Questions?

References

Course homepage http://yury.name/algoweb.html
Y. Lifshits

The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.nameA. Andoni, P. Indyk

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions. FOCs'06
http://web.mit.edu/andoni/www/papers/cSquared.pdf

