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Self-Reduction in a Nutshell

Problem: (1 + ε)-approximate l -range queries in
d -dimensional Hamming cube

Apply embedding {0, 1}d into {0, 1}k such that
l -neighbors usually fall within δ1k from each other,
while (1 + ε)l -far objects are embedded at least δ2k
from each other

Precompute all (δ1+δ2

2 )k-neighbors for every point in
{0, 1}k

In search step, embed q and explicitly check all
precomputed (δ1+δ2

2 )k-neighbors
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RP: Inner product test

Single test:

Choose random subset of positions of size 1
2l

Randomly assign 0 or 1 to every of them, the rest
assign to 0, call the resulting vector r

hr(p) = r · p

Claim: there exist constants δ1 > δ2

Hd(p, s) ≤ l ⇒ Pr [h(p) = h(q)] ≥ δ1

Hd(p, s) ≥ (1 + ε)l ⇒ Pr [h(p) = h(q)] ≤ δ2
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RP: Preprocessing

Inner product mapping:

Choose k random tests r1, . . . , rk

Map every p into A(p) = hr1(p) . . . hrk(p)

Data Structure

Apply inner product mapping to all strings in
database

For every v ∈ {0, 1}k precompute all
(δ1+δ2

2 )k-neighbors
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RP: Search

Compute A(q) = hr1(q) . . . hrk(q)

Retrieve and explicitly check all (δ1+δ2

2 )k-neighbors
of A(q)

Analysis:

Chances to miss true l -neighbor: exp(−δ1−δ2

2δ1
k)

Chances to waste time on (1 + ε)l -far neighbor:
exp(−δ1−δ2

2δ1
k)

Thus we should take near-logarithmic k which lead to
polynomial size of {0, 1}k to be NN-precomputed
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RP: Formal Claim

Theorem (Kushilevetz, Ostrovsky, Rabani, 1998)

Consider (1 + ε)-approximate l-range search in
d-dimensional Hamming cube. Then for every µ there is
a randomized algorithm with (roughly) d2polylog(d , n)
query time and nO(ε−2) preprocessing space. For every
query this algorithm answers correctly with probability at
least 1− µ

6 / 8



Thanks for your attention! Questions?
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