Nearest Neighbors in Doubling Metrics

Algorithmic Problems Around the Web \#7

Yury Lifshits
http://yury.name

CalTech, Fall'07, CS101.2, http://yury.name/algoweb.html

Making Nearest Neighbors Easier

Tractable solution: poly (n) preprocessing, poly $\log (n)$ search time General case of nearest neighbors seems to be intractable

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, poly $\log (n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Making Nearest Neighbors Easier

Tractable solution: poly (n) preprocessing, poly $\log (n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

- Define intrinsic dimension of search domain and assume it is small (usually constant or $\mathcal{O}(\log \log n))$
- Fix some probability distribution over inputs and queries. Find an algorithm which is fast with high probability over inputs/query

Nearest Neighbors in Small Doubling Dimension

Mini-plan:

Notion of doubling dimension
Solving 3-approximate nearest neighbors
From 3-approximation to $(1+\varepsilon)$-approximation

Notion of Doubling Dimension

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball $B(p, 2 r)$ has cover of at most λ balls of radius r

Notion of Doubling Dimension

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball $B(p, 2 r)$ has cover of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant $\operatorname{dim}(\mathbb{U})=\log \lambda$

Notion of Doubling Dimension

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball $B(p, 2 r)$ has cover of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant $\operatorname{dim}(\mathbb{U})=\log \lambda$

Exercise: Prove that for Euclidean space $\operatorname{dim}\left(\mathbb{R}^{d}\right)=\mathcal{O}(d)$

Notion of Doubling Dimension

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball $B(p, 2 r)$ has cover of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant $\operatorname{dim}(\mathbb{U})=\log \lambda$

Exercise: Prove that for Euclidean space $\operatorname{dim}\left(\mathbb{R}^{d}\right)=\mathcal{O}(d)$

Exercise: Prove that $\forall S \subset \mathbb{U}: \quad \operatorname{dim}(S) \leq 2 \operatorname{dim}(\mathbb{U})$

Doubling Dimension and r-Nets

Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff
(1) $\forall p, p^{\prime} \in T: d\left(p, p^{\prime}\right)>r$
(2) $\forall s \in S \quad \exists p \in T: d(s, p)<r$

Doubling Dimension and r-Nets

Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff
(1) $\forall p, p^{\prime} \in T: d\left(p, p^{\prime}\right)>r$
(2) $\forall s \in S \quad \exists p \in T: d(s, p)<r$

Lemma (Cover Lemma)
Every ball $B(p, r)$ has δr-net of cardinality at most $\left(\frac{1}{\delta}\right)^{\mathcal{O}(\operatorname{dim}(\mathbb{U}))}$

Cover Lemma: Proof

Greedy algorithm:

(1) Start from empty T
(2) Find some object in S which is still δr-far from all objects in T, add it to T
(3) Stop when all objects in S are within δr from some point in T

Cover Lemma: Proof

Greedy algorithm:

(1) Start from empty T
(2) Find some object in S which is still δr-far from all objects in T, add it to T
(3) Stop when all objects in S are within δr from some point in T

Upper bound on size:

- Apply definition of doubling constant to $B(p, r)$ recursively until getting $\frac{\delta r}{3}$-cover
- This cover has size $\left(\frac{1}{\delta}\right) \mathcal{O}(\operatorname{dim}(\mathbb{U}))$
- Every element of this cover can contain at most one object from T

Ring-Separator Lemma

Triple $(p, r, 2 r)$ is δ-ring-separator for S iff
(1) $|S \cap B(p, r)| \geq \delta|S|$
(0 $|S / B(p, 2 r)| \geq \delta|S|$

Ring-Separator Lemma

Triple $(p, r, 2 r)$ is δ-ring-separator for S iff
(1) $|S \cap B(p, r)| \geq \delta|S|$
(3) $|S / B(p, 2 r)| \geq \delta|S|$

Lemma (Ring-Separator Lemma)
For every S there is ring-separator with $\delta \geq\left(\frac{1}{2}\right)^{\mathcal{O}(\operatorname{dim}(S))}$

Ring-Separator Lemma: Proof

- Fix $\delta=\left(\frac{1}{2}\right)^{c \operatorname{dim}(S)}$ for some large c
- For every p choose the maximal r_{p} such that $\left|B\left(p, r_{p}\right)\right|<\delta|S|$
- Let p_{0} be the one having minimal $r_{p_{0}}$
- If none of triples $\left(p, r_{p}, 2 r_{p}\right)$ is δ ring-separator build an $r_{p_{0}}$-net for $B\left(p_{0}, 2 r_{p_{0}}\right)$:
- Start from r_{0}, and set $A:=B\left(p_{0}, 2 r_{p_{0}}\right) / B\left(p_{0}, r_{p_{0}}\right)$
- Iteratively add some point p from A to net, update

$$
A:=A / B(p, r)
$$

- Since A decreased by at most $2 \delta|S|$ points each time there must be many points in cover. Since it is $r_{p_{0}}$-net for $B\left(p_{0}, 2 r_{p_{0}}\right)$ there must be few points. Contradiction

Ring-Separator Tree

Krauthgamer\&Lee’05

Preprocessing:

(1) Find $\left(\frac{1}{2}\right)^{\mathcal{O}(\operatorname{dim}(S))}$ ring-separator $(p, r, 2 r)$ for S
(2) Put objects from $B(p, 2 r)$ to inner branch
(3) Put objects from $S / B(p, r)$ to outer branch
(9) Recursively repeat

Ring-Separator Tree

Preprocessing:

Krauthgamer\&Lee'05

(1) Find $\left(\frac{1}{2}\right)^{\mathcal{O}(\operatorname{dim}(S))}$ ring-separator $(p, r, 2 r)$ for S
(2) Put objects from $B(p, 2 r)$ to inner branch
(3) Put objects from $S / B(p, r)$ to outer branch

(9) Recursively repeat

Search:

(1) For every node $(p, r, 2 r)$: if $d(q, p) \leq 3 r / 2$ go only to inner branch otherwise go only to outer branch
(2) Return the best object considered in search

3-NN via Ring-Separator Tree

Notation: p_{1}, \ldots, p_{k} are the centers of visited rings

- If $p_{N N}(q)=p_{k}$ we are done
- If not, let us consider p_{i} where we miss the right branch. There are two cases:

- Anyway, p_{i} at most 3 time worse than $p_{N N}(q)$

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(2) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide
(3) Return an object in cover that is the closest to q

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(2) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide
(3) Return an object in cover that is the closest to q

p $\begin{gathered} \\ p_{N N} \\ p^{\prime} \bigcirc\end{gathered}$

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(0) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide

- Return an object in cover that is the closest to q

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(1) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide

- Return an object in cover that is the closest to q

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(2) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide
(3) Return an object in cover that is the closest to q

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(2) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide
(3) Return an object in cover that is the closest to q

From 3-NN to r-NN: Net Construction

Preprocessing:

(1) For every i build 2^{i}-net for S (every lower level contains all points from the higher level)
(2) Compute children pointers: from every element p of 2^{i}-net to all balls of 2^{i-1}-net required to cover $B\left(p, 2^{i}\right)$
(3) Compute brother pointers: from every element p of 2^{i}-net to all elements p^{\prime} from 2^{i}-net needed for covering $B\left(p, 2^{i}\right)$
(4) Compute parent pointers: from every element p of 2^{i-1}-net to the element p^{\prime} from 2^{i}-net within 2^{i} from it

From 3-NN to r-NN: Net Construction

Preprocessing:

(1) For every i build 2^{i}-net for S (every lower level contains all points from the higher level)
(2) Compute children pointers: from every element p of 2^{i}-net to all balls of 2^{i-1}-net required to cover $B\left(p, 2^{i}\right)$
(3) Compute brother pointers: from every element p of 2^{i}-net to all elements p^{\prime} from 2^{i}-net needed for covering $B\left(p, 2^{i}\right)$
(4) Compute parent pointers: from every element p of 2^{i-1}-net to the element p^{\prime} from 2^{i}-net within 2^{i} from it

On-line net construction:

(1) Go up by parent pointers until meeting ball big enough
(2) Use brother pointer
(3) Go by children pointers until getting cover small enough

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain \mathbb{U} has r-net of size at most $(1 / r)^{d+o(1)}$
- Karger-Ruhl dimension of database $S \subset \mathbb{U}$ is the minimal d that for every $p \in S$ and every r the following inequality holds:

$$
|B(p, 2 r) \cap S| \leq 2^{d}|B(p, r) \cap S|
$$

- Measure-based dimensions
- Disorder dimension (see next chapter)

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain \mathbb{U} has r-net of size at most $(1 / r)^{d+o(1)}$
- Karger-Ruhl dimension of database $S \subset \mathbb{U}$ is the minimal d that for every $p \in S$ and every r the following inequality holds:

$$
|B(p, 2 r) \cap S| \leq 2^{d}|B(p, r) \cap S|
$$

- Measure-based dimensions
- Disorder dimension (see next chapter)

Exercise: prove that

$$
\forall S \subset \mathbb{U}: \quad \operatorname{dim}_{\text {Doub }}(S) \leq 4 \operatorname{dim}_{\mathrm{KR}}(S)
$$

References

R. Krauthgamer and J.R. Lee

The black-box complexity of nearest-neighbor search Theoretical Computer Science, 2005 http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf
R. Krauthgamer and J.R. Lee

Navigating nets: simple algorithms for proximity search SODA'O4 http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA04.pdf

K.L. Clarkson

Nearest-Neighbor Searching and Metric Space Dimensions
In Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, 2006
http://www.cs.bell-labs.com/who/clarkson/nn_survey/p.pdf

