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Making Nearest Neighbors Easier
Tractable solution: poly(n) preprocessing, poly log(n) search time

General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

Define intrinsic dimension of search domain and
assume it is small (usually constant or O(log log n))

Fix some probability distribution over inputs and
queries. Find an algorithm which is fast with high
probability over inputs/query
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Nearest Neighbors in Small
Doubling Dimension

Mini-plan:
Notion of doubling dimension
Solving 3-approximate nearest neighbors
From 3-approximation to (1 + ε)-approximation
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Notion of Doubling Dimension

Doubling constant λ for search
domain U: minimal value such
that for every r and every object
p ∈ U the ball B(p, 2r) has cover
of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant
dim(U) = log λ

Exercise: Prove that for Euclidean space dim(Rd) = O(d)

Exercise: Prove that ∀S ⊂ U : dim(S) ≤ 2dim(U)
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Doubling Dimension and r -Nets

Set T ⊂ U is an r-net for S ⊂ U iff
(1) ∀p, p′ ∈ T : d(p, p′) > r
(2) ∀s ∈ S ∃p ∈ T : d(s, p) < r

Lemma (Cover Lemma)

Every ball B(p, r) has δr -net of cardinality at

most (1
δ)
O(dim(U))
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Cover Lemma: Proof
Greedy algorithm:

1 Start from empty T

2 Find some object in S which is still δr -far from all objects in
T , add it to T

3 Stop when all objects in S are within δr from some point in T

Upper bound on size:

Apply definition of doubling constant to B(p, r) recursively
until getting δr

3
-cover

This cover has size (1
δ
)O(dim(U))

Every element of this cover can contain at most one object
from T
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Ring-Separator Lemma

Triple (p, r , 2r) is
δ-ring-separator
for S iff

1 |S ∩ B(p, r)| ≥ δ|S |

2 |S/B(p, 2r)| ≥ δ|S |

≥ δ|S |

≤ (1− 2δ)|S |

≥ δ|S |

Lemma (Ring-Separator Lemma)

For every S there is ring-separator with δ ≥ (1
2)
O(dim(S))

7 / 14



Ring-Separator Lemma

Triple (p, r , 2r) is
δ-ring-separator
for S iff

1 |S ∩ B(p, r)| ≥ δ|S |

2 |S/B(p, 2r)| ≥ δ|S |

≥ δ|S |

≤ (1− 2δ)|S |

≥ δ|S |

Lemma (Ring-Separator Lemma)

For every S there is ring-separator with δ ≥ (1
2)
O(dim(S))

7 / 14



Ring-Separator Lemma: Proof

Fix δ = (1
2
)cdim(S) for some large c

For every p choose the maximal rp such that |B(p, rp)| < δ|S |

Let p0 be the one having minimal rp0

If none of triples (p, rp, 2rp) is δ ring-separator build an rp0-net
for B(p0, 2rp0):

Start from r0, and set A := B(p0, 2rp0)/B(p0, rp0)

Iteratively add some point p from A to net, update
A := A/B(p, r)

Since A decreased by at most 2δ|S | points each time there
must be many points in cover. Since it is rp0-net for
B(p0, 2rp0) there must be few points. Contradiction
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Ring-Separator Tree

Krauthgamer&Lee’05
Preprocessing:

1 Find (1
2
)O(dim(S)) ring-separator (p, r , 2r)

for S

2 Put objects from B(p, 2r) to inner branch

3 Put objects from S/B(p, r) to outer branch

4 Recursively repeat

p

Search:
1 For every node (p, r , 2r): if d(q, p) ≤ 3r/2 go only to inner

branch otherwise go only to outer branch

2 Return the best object considered in search
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3-NN via Ring-Separator Tree

Notation: p1, . . . , pk are the centers of visited rings

If pNN(q) = pk we are done

If not, let us consider pi where we miss the right
branch. There are two cases:

pi

pNN

q pi
pNNq

Anyway, pi at most 3 time worse than pNN(q)
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From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3 ). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN
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From 3-NN to r -NN: Net Construction
Preprocessing:

1 For every i build 2i -net for S (every lower level contains all
points from the higher level)

2 Compute children pointers: from every element p of 2i -net to
all balls of 2i−1-net required to cover B(p, 2i)

3 Compute brother pointers: from every element p of 2i -net to
all elements p′ from 2i -net needed for covering B(p, 2i)

4 Compute parent pointers: from every element p of 2i−1-net to
the element p′ from 2i -net within 2i from it

On-line net construction:
1 Go up by parent pointers until meeting ball big enough

2 Use brother pointer

3 Go by children pointers until getting cover small enough
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Other Definitions of Intrinsic Dimension

Box dimension is the minimal d that for every r our
domain U has r -net of size at most (1/r)d+o(1)

Karger-Ruhl dimension of database S ⊂ U is the
minimal d that for every p ∈ S and every r the
following inequality holds:
|B(p, 2r) ∩ S | ≤ 2d |B(p, r) ∩ S |

Measure-based dimensions

Disorder dimension (see next chapter)

Exercise: prove that
∀S ⊂ U : dimDoub(S) ≤ 4dimKR(S)
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