Nearest Neighbors in Doubling Metrics

Algorithmic Problems Around the Web #7

Yury Lifshits http://yury.name

CalTech, Fall'07, CS101.2, http://yury.name/algoweb.html

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly \log(n)$ search time General case of nearest neighbors seems to be intractable

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly \log(n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly \log(n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

- Define intrinsic dimension of search domain and assume it is small (usually constant or O(log log n))
- Fix some probability distribution over inputs and queries. Find an algorithm which is fast with high probability over inputs/query

Nearest Neighbors in Small Doubling Dimension

Mini-plan:

Notion of doubling dimension Solving 3-approximate nearest neighbors From 3-approximation to $(1 + \varepsilon)$ -approximation

Doubling constant λ for search domain U: minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r

Doubling constant λ for search domain U: minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant $dim(\mathbb{U}) = \log \lambda$

Doubling constant λ for search domain U: minimal value such that for every *r* and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius *r*

Doubling dimension: logarithm of doubling constant $dim(\mathbb{U}) = \log \lambda$

Exercise: Prove that for Euclidean space dim $(\mathbb{R}^d) = \mathcal{O}(d)$

Doubling constant λ for search domain U: minimal value such that for every *r* and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius *r*

Doubling dimension: logarithm of doubling constant $dim(\mathbb{U}) = \log \lambda$

Exercise: Prove that for Euclidean space dim $(\mathbb{R}^d) = \mathcal{O}(d)$

Exercise: Prove that $\forall S \subset \mathbb{U}$: dim $(S) \leq 2$ dim (\mathbb{U})

Doubling Dimension and r-Nets

Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff (1) $\forall p, p' \in T : d(p, p') > r$ (2) $\forall s \in S \exists p \in T : d(s, p) < r$

Doubling Dimension and r-Nets

Lemma (Cover Lemma) Every ball B(p, r) has δr -net of cardinality at most $(\frac{1}{\delta})^{\mathcal{O}(\dim(\mathbb{U}))}$

Cover Lemma: Proof

Greedy algorithm:

- Start from empty T
- Solution Find some object in *S* which is still δr -far from all objects in *T*, add it to *T*
- Stop when all objects in S are within δr from some point in T

Cover Lemma: Proof

Greedy algorithm:

- Start from empty T
- Solution Find some object in *S* which is still δr -far from all objects in *T*, add it to *T*
- Stop when all objects in S are within δr from some point in T

Upper bound on size:

- Apply definition of doubling constant to B(p, r) recursively until getting $\frac{\delta r}{3}$ -cover
- This cover has size $(\frac{1}{\delta})^{\mathcal{O}(\dim(\mathbb{U}))}$
- Every element of this cover can contain at most one object from *T*

Ring-Separator Lemma

Triple (p, r, 2r) is δ -ring-separator for *S* iff

- $|S \cap B(p,r)| \geq \delta |S|$
- $|S/B(p,2r)| \geq \delta|S|$

Ring-Separator Lemma

Triple (p, r, 2r) is δ -ring-separator for *S* iff

- $|S \cap B(p,r)| \geq \delta |S|$
- $|S/B(p,2r)| \geq \delta|S|$

Lemma (Ring-Separator Lemma) For every *S* there is ring-separator with $\delta \ge (\frac{1}{2})^{\mathcal{O}(dim(S))}$

Ring-Separator Lemma: Proof

- Fix $\delta = (\frac{1}{2})^{\operatorname{cdim}(S)}$ for some large c
- For every p choose the maximal r_p such that $|B(p, r_p)| < \delta |S|$
- Let p_0 be the one having minimal r_{p_0}
- If none of triples (p, r_p, 2r_p) is δ ring-separator build an r_{p0}-net for B(p₀, 2r_{p0}):
 - Start from r_0 , and set $A := B(p_0, 2r_{p_0})/B(p_0, r_{p_0})$
 - Iteratively add some point p from A to net, update
 A := A/B(p, r)
- Since A decreased by at most 2δ|S| points each time there must be many points in cover. Since it is r_{p0}-net for B(p₀, 2r_{p0}) there must be few points. Contradiction

Ring-Separator Tree

Krauthgamer&Lee'05

Preprocessing:

- Find $(\frac{1}{2})^{\mathcal{O}(\dim(S))}$ ring-separator (p, r, 2r) for S
- 2 Put objects from B(p, 2r) to inner branch
- Solution Put objects from S/B(p, r) to outer branch
- Recursively repeat

Ring-Separator Tree

Krauthgamer&Lee'05

Preprocessing:

- Find $(\frac{1}{2})^{\mathcal{O}(\dim(S))}$ ring-separator (p, r, 2r) for S
- 2 Put objects from B(p, 2r) to inner branch
- Solution Put objects from S/B(p, r) to outer branch

Recursively repeat

Search:

- For every node (p, r, 2r): if $d(q, p) \le 3r/2$ go only to inner branch otherwise go only to outer branch
 - Return the best object considered in search

3-NN via Ring-Separator Tree

Notation: p_1, \ldots, p_k are the centers of visited rings

- If $p_{NN}(q) = p_k$ we are done
- If not, let us consider *p_i* where we miss the right branch. There are two cases:

• Anyway, p_i at most 3 time worse than $p_{NN}(q)$

- Find 3-approximate nearest neighbor p for q
- Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q

- Find 3-approximate nearest neighbor p for q
- Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q

- Find 3-approximate nearest neighbor p for q
- Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q

- Find 3-approximate nearest neighbor p for q
- Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q

- Find 3-approximate nearest neighbor p for q
- Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q

- Find 3-approximate nearest neighbor p for q
- 2 Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q

From 3-NN to r-NN: Net Construction

Preprocessing:

- For every *i* build 2^{*i*}-net for *S* (every lower level contains all points from the higher level)
- Compute children pointers: from every element p of 2ⁱ-net to all balls of 2ⁱ⁻¹-net required to cover B(p, 2ⁱ)
- Sompute brother pointers: from every element p of 2^{i} -net to all elements p' from 2^{i} -net needed for covering $B(p, 2^{i})$
- Compute parent pointers: from every element p of 2ⁱ⁻¹-net to the element p' from 2ⁱ-net within 2ⁱ from it

From 3-NN to r-NN: Net Construction

Preprocessing:

- For every *i* build 2^{*i*}-net for *S* (every lower level contains all points from the higher level)
- Compute children pointers: from every element p of 2ⁱ-net to all balls of 2ⁱ⁻¹-net required to cover B(p, 2ⁱ)
- Sompute brother pointers: from every element p of 2^{i} -net to all elements p' from 2^{i} -net needed for covering $B(p, 2^{i})$
- Compute parent pointers: from every element p of 2ⁱ⁻¹-net to the element p' from 2ⁱ-net within 2ⁱ from it

On-line net construction:

- Go up by parent pointers until meeting ball big enough
- Ose brother pointer
- Go by children pointers until getting cover small enough

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain U has r-net of size at most (1/r)^{d+o(1)}
- Karger-Ruhl dimension of database S ⊂ U is the minimal d that for every p ∈ S and every r the following inequality holds: |B(p,2r) ∩ S| ≤ 2^d|B(p,r) ∩ S|
- Measure-based dimensions
- Disorder dimension (see next chapter)

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain U has r-net of size at most (1/r)^{d+o(1)}
- Karger-Ruhl dimension of database S ⊂ U is the minimal d that for every p ∈ S and every r the following inequality holds: |B(p,2r) ∩ S| ≤ 2^d|B(p,r) ∩ S|
- Measure-based dimensions
- Disorder dimension (see next chapter)

Exercise: prove that $\forall S \subset \mathbb{U}$: dim_{Doub} $(S) \leq 4$ dim_{KR}(S)

References

R. Krauthgamer and J.R. Lee

The black-box complexity of nearest-neighbor search Theoretical Computer Science, 2005 http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf

R. Krauthgamer and J.R. Lee Navigating nets: simple algorithms for proximity search SODA'04 http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA04.pdf

K.L. Clarkson

Nearest-Neighbor Searching and Metric Space Dimensions In Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, 2006 http://www.cs.bell-labs.com/who/clarkson/nn_survey/p.pdf