
Point-to-Point Shortest Path Algorithms

with Preprocessing

Andrew V. Goldberg

Microsoft Research – Silicon Valley

www.research.microsoft.com/∼goldberg/

Joint work with

Chris Harrelson, Haim Kaplan, and Renato Werneck



Einstein Quote

Everything should be made as simple as possible, but not simpler

reach 1



Shortest Path Problem

Variants

• Non-negative and arbitrary arc lengths.

• Point to point, single source, all pairs.

• Directed and undirected.

Here we study

• Point to point, non-negative length, directed problem.

• Allow preprocessing with limited (linear) space.

Many applications, both directly and as a subroutine.

reach 2



Shortest Path Problem

Input: Directed graph G = (V, A), non-negative length function

ℓ : A → R+, source s ∈ V , terminal t ∈ V .

Preprocessing: Limited space to store results.

Query: Find a shortest path from s to t.

Interested in exact algorithms that search a subgraph.

Related work: reach-based routing [Gutman 04], hierarchi-

cal decomposition [Schultz, Wagner & Weihe 02], [Sanders &

Schultes 05, 06], geometric pruning [Wagner & Willhalm 03], arc

flags [Lauther 04], [Köhler, Möhring & Schilling 05], [Möhring

et al. 06], DIMACS Implementation Challenge 2006.

reach 3



Motivating Application

Driving directions

• Run on servers and small devices.

• Implementations until recently:
◦ Use base graph based on road categories and manually

augmented.

◦ Runs (bidirectional) Dijkstra or A∗ with Euclidean bounds

on “patched” graph.

◦ Non-exact, not very efficient.

• Interested in exact and very efficient algorithms.

• Big graphs: Western Europe, USA, North America: 18 to

30 million vertices.

reach 4



Outline

• Scanning method and Dijkstra’s algorithm.

• Bidirectional Dijkstra’s algorithm.

• A∗ search.

• ALT Algorithm

• Definition of reach

• Reach-based algorithm

• Combining reach and A∗

reach 5



Scanning Method

• For each vertex v maintain its distance label ds(v) and status

S(v) ∈ {unreached, labeled, scanned}.

• Unreached vertices have ds(v) = ∞.

• If ds(v) decreases, v becomes labeled.

• To scan a labeled vertex v, for each arc (v, w),

if ds(w) > ds(v) + ℓ(v, w) set ds(w) = ds(v) + ℓ(v, w).

• Initially for all vertices are unreached.

• Start by decreasing ds(s) to 0.

• While there are labeled vertices, pick one and scan it.

• Different selection rules lead to different algorithms.

reach 6



Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].

• At each step scan a labeled vertex with the minimum label.

• Stop when t is selected for scanning.

Work almost linear in the visited subgraph size.

reach 7



Bidirectional Algorithm

Reverse Algorithm: Run algorithm from t in the graph with all

arcs reversed, stop when t is selected for scanning.

Bidirectional Algorithm

• Run forward Dijkstra from s and backward from t.

• Maintain µ, the length of the shortest path seen: when scan-

ning an arc (v, w) such that w has been scanned in the other

direction, check if the corresponding s-t path improves µ.

• Stop when about to scan a vertex x scanned in the other

direction.

• Output µ and the corresponding path.

reach 8



Bidirectional Algorithm: Pitfalls

The algorithm is not as simple as it looks.

5x

2 2
s t

ba 5

5

The searches meat at x, but x is not on the shortest path.

reach 9



Example Graph

1.6M vertices, 3.8M arcs, travel time metric.

reach 10



Dijkstra’s Algorithm

Searched area

reach 11



Bidirectional Algorithm

forward search/ reverse search

reach 12



A∗ Search

[Doran 67], [Hart, Nilsson & Raphael 68]

Similar to Dijkstra’s algorithm but:

• Domain-specific estimates πt(v) on dist(v, t) (potentials).

• At each step pick a labeled vertex with the minimum k(v) =

ds(v) + πt(v).

Best estimate of path length through v.

• In general, optimality is not guaranteed.

reach 13



Feasibility and Optimality

Potential transformation: Replace ℓ(v, w) by

ℓπt(v, w) = ℓ(v, w) − πt(v) + πt(w) (reduced costs).

Fact: Problems defined by ℓ and ℓπt are equivalent.

Definition: πt is feasible if ∀(v, w) ∈ A, the reduced costs are

nonnegative.

Estimates are “locally consistent:” πt(w) + ℓ(v, w) ≥ πt(v).

Optimality: If πt is feasible, the A∗ search is equivalent to Dijk-

stra’s algorithm on transformed network, which has nonnegative

arc lengths. A∗ search finds an optimal path.

Different order of vertex scans, different subgraph searched.

Fact: If πt is feasible and πt(t) = 0, then πt gives lower bounds

on distances to t.

reach 14



Computing Lower Bounds

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick & Vitter 86].

For graph embedded in a metric space, use Euclidean distance.

Limited applicability, not very good for driving directions.

We use triangle inequality

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

���
���
���
���
���
���

���
���
���
���
���
���

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

v w

a b

dist(v, w) ≥ dist(v, b)−dist(w, b); dist(v, w) ≥ dist(a, w)−dist(a, v).

reach 15



Lower Bounds (cont.)

• Maximum of feasible potentials is feasible.

• Select landmarks (a small number).

• For all vertices, precompute distances to and from each land-

mark.

• For each s, t, use max of the corresponding lower bounds for

πt(v).

Why this works well (when it does)

s t

a

x y

ℓπt(x, y) = 0

reach 16



Bidirectional Lower-bounding

Forward reduced costs: ℓπt(v, w) = ℓ(v, w) − πt(v) + πt(w).

Reverse reduced costs: ℓπs(v, w) = ℓ(v, w) + πs(v) − πs(w).

What’s the problem?

reach 17



Bidirectional Lower-bounding

Forward reduced costs: ℓπt(v, w) = ℓ(v, w) − πt(v) + πt(w).

Reverse reduced costs: ℓπs(v, w) = ℓ(v, w) + πs(v) − πs(w).

Fact: πt and πs give the same reduced costs iff πs + πt = const.

[Ikeda et at. 94]: use ps(v) = πs(v)−πt(v)
2 and pt(v) = −ps(v).

Other solutions possible. Easy to lose correctness.

ALT algorithms use A∗ search and landmark-based lower bounds.

reach 18



Landmark Selection

Preprocessing

• Random selection is fast.

• Many heuristics find better landmarks.

• Local search can find a good subset of candidate landmarks.

• We use a heuristic with local search.

Preprocessing/query trade-off.

Query

• For a specific s, t pair, only some landmarks are useful.

• Use only active landmarks that give best bounds on dist(s, t).

• If needed, dynamically add active landmarks (good for the

search frontier).

• Only three active landmarks on the average.

Allows using many landmarks with small time overhead.

reach 19



Bidirectional ALT Example

ALT algorithm: A∗ search with landmark bounds.

reach 20



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

reach 21



Reach Intuition

Identify local intersections and prune them when searching far

from s and t.

reach 22



Reaches

[Gutman 04] v ts

• Consider a vertex v that splits a path P into P1 and P2.

rP (v) = min(ℓ(P1), ℓ(P2)).

• r(v) = maxP (rP (v)) over all shortest paths P through v.

Using reaches to prune Dijkstra:

LB(w,t)
d(s,v) wv

ts

If r(w) < min(d(v) + ℓ(v, w), LB(w, t)) then prune w.

• Can efficiently compute and use reach upper bounds.

• Using shortcuts (“virtual express lanes”) [Sanders & Schultes

06] is crucial.

reach 23



Obtaining Lower Bounds

Can use landmark lower bounds if available.

Bidirectional search gives implicit bounds (Rt below).

Rt

LB(w,t)
d(s,v) wv

ts

Reach-based query algorithm is Dijkstra’s algorithm with prun-

ing based on reaches. Given a lower-bound subroutine, a small

change to Dijkstra’s algorithm.

reach 24



Computing Reaches

• A natural exact computation uses all-pairs shortest paths.

• Overnight for 0.3M vertex graph, years for 30M vertex graph.

• Have a heuristic improvement, but it is not fast enough.

• Can use reach upper bounds for query search pruning.

Iterative Approximation Algorithm: [Gutman 04]

• Use partial shortest path trees of depth O(ǫ) to bound reaches

of vertices v with r(v) < ǫ.

• Delete vertices with bounded reaches, add penalties.

• Increase ǫ and repeat.

Query time does not increase much; preprocessing faster but still

not fast enough.

reach 25



Reach Algorithm

reach 26



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

reach 27



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

10001000

1010101010101010
100010101020103010401030102010101000 ts

reach 28



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

10001000

1010101010101010

80

ts

reach 29



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

1000605040304050601000 ts

reach 30



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

1000201020302010201000 ts

reach 31



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

• A small number of shortcuts can greatly decrease many reaches.

100001003001001000 ts

reach 32



Shortcuts

[Sanders & Schultes 05, 06].

• During preprocessing we shortcut small (constant) degree

vertices every time ǫ is updated.

• To shortcut, replace a vertex by a clique on its neighbors.

• The number of shortcut arcs is linear in n.

• Shortcuts greatly speed up preprocessing.

• Shortcuts speed up queries.

• Shortcuts require more space (extra arcs, auxiliary info.)

reach 33



Reach with Shortcuts

reach 34



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short (RE) 17 100 2804 5877 2.39

reach 35



Reaches and ALT

• ALT computes transformed and original distances.

• ALT can be combined with reach pruning.

• Careful: Implicit lower bounds do not work, but landmark

lower bounds do.

• Shortcuts do not affect landmark distances and bounds.

reach 36



Reach with Shortcuts and ALT

reach 37



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short (RE) 17 100 2804 5877 2.39

Reach+Short+ALT (REAL) 21 204 367 1513 0.73

reach 38



The North America Graph

North America (30M vertices), random queries, 16 landmarks.

preprocessing query
method hours GB avgscan maxscan ms

Bidirectional Dijkstra — 0.5 10255356 27166866 7633.9

ALT 1.6 2.3 250381 3584377 393.4

Reach impractical

Reach+Short (RE) 11.3 1.8 14684 24618 17.4

Reach+Short+ALT (REAL) 12.9 3.6 1595 7450 3.7

reach 39



Further Improvements

Improved locality: sort by reach.

Reach-aware landmarks:

• Store landmark distances only for high-reach vertices (e.g.,

5%).

• For low-reach vertices, use the closest high-reach vertex to

compute lower bounds.

• Can use freed space for more landmarks, improve both space

and time.

Practical even on the North America graph (30M vertices):

• ≈ 1ms. query time on a server.

• ≈ 6sec. query time on a Pocket PC with 4GB flash card.

• Better for local queries.

reach 40



Reach-Aware Landmarks

• Most time is spend searching high-reach vertices.

• To save space, maintain landmark distances only for high-

reach vertices.

• For a low-reach vertex, use a nearby proxy high-reach vertex

to compute distance bounds.

• Trade efficiency for space.

• Use more landmarks to improve efficiency.

REAL(i, j): i landmarks, distances maintained for n
j

vertices.

reach 41



Random Queries – USA Graph

prep. tm disk sp query
metric method (min) (MB) avg sc. max sc. time (ms)

time ALT(16) 18.6 2563 187968 2183718 400.51
RE 44.3 890 2317 4735 1.81
REAL(16,1) 63.9 3028 675 3011 1.14
REAL(64,16) 121.0 1575 540 1937 1.05

distance ALT(16) 14.5 2417 276195 2910133 530.35
RE 70.8 928 7104 13706 5.97
REAL(16,1) 87.8 2932 892 4894 1.80
REAL(64,16) 138.1 1585 628 4076 1.48

unit ALT(16) 14.2 1992 240801 3922923 414.06
RE 82.7 821 3455 6849 2.52
REAL(16,1) 99.5 2277 847 2684 1.31
REAL(64,16) 147.0 1270 617 2484 1.16

reach 42



Random Queries – Europe Graph

prep. tm disk sp query
metric method (min) (MB) avg sc. max sc. time (ms)

time ALT(16) 13.2 1597 82348 993015 160.34
re 82.7 626 4643 8989 3.47
real(16,1) 96.8 1849 814 4709 1.22
real(64,16) 140.8 1015 679 2955 1.11

distance ALT(16) 10.1 1622 240750 3306755 430.02
re 49.3 664 7045 12958 5.53
real(16,1) 60.3 1913 882 5973 1.52
real(64,16) 89.8 1066 583 2774 1.16

unit ALT(16) 11.5 1488 140291 2137518 247.79
re 184.9 579 4312 11198 2.95
real(16,1) 196.5 1674 1097 5025 1.38
real(64,16) 229.4 917 756 4175 1.14

reach 43



Demo

reach 44



Concluding Remarks

• Recent progress: the DIMACS Challenge, [Bast et. al 06],

[Sanders and Schultes 06].

• Preprocessing heuristics work well on road networks.

• How to select good shortcuts? (Road networks/grids.)

• For which classes of graphs do these techniques work?

• Need theoretical analysis for interesting graph classes.

• Interesting problems related to reach, e.g.
◦ Is exact reach as hard as all-pairs shortest paths?

◦ Constant-ratio upper bounds on reaches in Õ(m) time.

• Dynamic graphs.

reach 45


