Similarity Search: a Web Perspective

Yury Lifshits

Caltech

http://yury.name

CMI Retreat

9 October 2007

1/15

Similarity Search: An Example

2/1

Outline

Challenges in Web Technologies Theory of Similarity Search

New math problems, algorithms and experiments

Applications

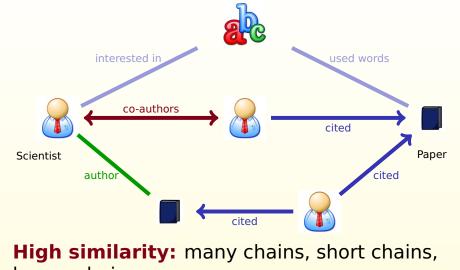
2 Current State **3** Problem List

1

Similarity Search in Web Technologies

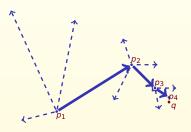
3/15

Similarity Search vs. Web

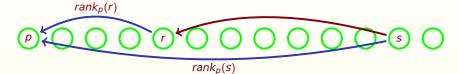

- Recommendations (movies, books...)
- Item-item recommendations
- News aggregation
- Ad targeting
- "Best match" search: resume, job, BF/GF, car, apartment

Current State of

My Research


Similarity Chart

heavy chains


Recent Results

- Similarity search without triangle inequality joint work with Navin Goyal and Hinrich Schütze
- Similarity search for "random texts" joint work with Benjamin Hoffmann and Dirk Nowotka
- Least squares for sparse matrices joint work with Dirk Nowotka
- Improving Viterbi algorithm for HMM joint work Shay Mozes, Oren Weimann, and Michal Ziv-Ukelson

Concept of Disorder

Sort all objects by their similarity to p:

Then by similarity to *r*:

Dataset has disorder **D** if

 $\forall p, r, s : rank_r(s) \leq D(rank_p(r) + rank_p(s))$

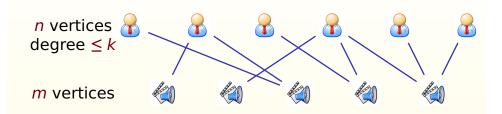
There is similarity search solution with roughly $\mathcal{O}(Dn \log n)$ data structure and $\mathcal{O}(D \log n)$ search time

9/15

3

My Problem List

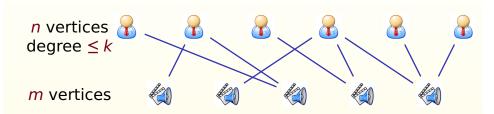
Other Related Stuff


- Yandex datasets: on-line advertising logs, friendship graph
- http://simsearch.yury.name
 Bibliography, researchers, links, open problems

- Algorithmic Problems Around the Web CS101.2, MW 11:00-11:55, Jorgensen 287
- Nearest Neighbors Tutorial
- Mini-course A Guide to Web Research

10/15

Similarity Search in Bipartite Graphs



Person-person similarity: # 2-step paths Person-movie similarity: # 3-step paths

Constraints:

poly(m, n) for preprocessing $poly(k, \log n, \log m)$ for query processing

Clustering in Bipartite Graphs

 (α, β) -clustering for movies: Every cluster has size at most α For every user all his choices are covered by at most β clusters

Thanks for your attention!

Questions?

Visualizing Social Networks

To map people (collisions forbidden) to 2-dimensional grid minimizing the sum $\sum_{p,q \text{ are friends}} |M(p) - M(q)|^2$

14/15