Similarity Search: a Web Perspective

Yury Lifshits

Caltech

http://yury.name

CMI Retreat

9 October 2007

Similarity Search: An Example

Similarity Search: An Example

Similarity Search: An Example

Outline

Challenges in Web Technologies

Theory of Similarity Search

New math problems, algorithms and experiments

Outline

Challenges in Web Technologies Theory of Similarity Search

New math problems, algorithms and experiments

Similarity Search in Web Technologies

Similarity Search vs. Web

- Recommendations (movies, books...)
- Item-item recommendations
- News aggregation
- Ad targeting
- "Best match" search: resume, job, BF/GF, car, apartment

Similarity Chart

High similarity: many chains, short chains, heavy chains

Current State of

My Research

Recent Results

- Similarity search without triangle inequality joint work with Navin Goyal and Hinrich Schütze
- Similarity search for "random texts" joint work with Benjamin Hoffmann and Dirk Nowotka
- Least squares for sparse matrices joint work with Dirk Nowotka
- Improving Viterbi algorithm for HMM joint work Shay Mozes, Oren Weimann, and Michal Ziv-Ukelson

Sort all objects by their similarity to p:

Sort all objects by their similarity to *p*:

Sort all objects by their similarity to *p*:

Dataset has disorder *D* if $\forall p, r, s : rank_r(s) \leq D(rank_p(r) + rank_p(s))$

Sort all objects by their similarity to *p*:

Dataset has disorder *D* if $\forall p, r, s : rank_r(s) \le D(rank_p(r) + rank_p(s))$

There is similarity search solution with roughly $O(Dn \log n)$ data structure and $O(D \log n)$ search time

Other Related Stuff

- Yandex datasets: on-line advertising logs, friendship graph
- http://simsearch.yury.name

Bibliography, researchers, links, open problems

- Algorithmic Problems Around the Web CS101.2, MW 11:00-11:55, Jorgensen 287
- Nearest Neighbors Tutorial
- Mini-course **A Guide to Web Research**

3 My Problem List

Similarity Search in Bipartite Graphs

Person-person similarity: # 2-step paths Person-movie similarity: # 3-step paths

Similarity Search in Bipartite Graphs

Person-person similarity: # 2-step paths Person-movie similarity: # 3-step paths

Constraints:

poly(m, n) for preprocessing
poly(k, log n, log m) for query processing

Clustering in Bipartite Graphs

 (α, β) -clustering for movies: Every cluster has size at most α For every user all his choices are covered by at most β clusters

Visualizing Social Networks

Optimization problem:

To map people (collisions forbidden) to 2-dimensional grid minimizing the sum $\sum_{p,q \text{ are friends}} |M(p) - M(q)|^2$

Thanks for your attention!

Questions?