Experimental Projects on Web Algorithms

Yury Lifshits http://yury.name

CalTech, Fall'07 Invited lecture at CS141a

Invitation to CS101.2

New Caltech course Algorithmic Problems Around the Web:

- http://yury.name/algoweb.html
- MW 11:00-11:55, Jorgensen 287
- Lectures: algorithms for nearest neighbor search
- Projects: adjusting above algorithms to web technologies
- Datasets: friendship graph, users-ads graph

Course Philosophy

Challenges in Web Technologies Recs, Ads, Social Networks

Existing Theory:

Algorithms for Nearest Neighbor Search

Course Philosophy

Challenges in Web Technologies Recs, Ads, Social Networks

Existing Theory:

Algorithms for Nearest Neighbor Search

New Math Problems

New Algorithms

New Experiments

Outline

Challenges in Web Technologies

Outline

Challenges in Web Technologies


Existing Theory: Nearest Neighbors

Outline

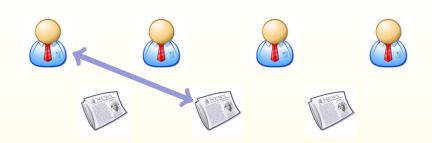
- Challenges in Web Technologies
- Existing Theory: Nearest Neighbors
- Topics for Experimental Projects

Part I Challenges in Web Technologies

Recommendation Systems

Approaches:

Content-based Collaborative filtering


Behavioral Targeting

Ad targeting:

Ancient: broadcasting Current: contextual Future: behavioral

Personalized News Aggregation

Factors to take into account:

Friendship

Content

Feedback (previous ratings)

Popularity (votes, comments, hyperlinks)

Social Networks Analysis

Social network:

Nodes

Edges

Examples of relations: financial exchange, friends, dislike, conflict, trade, web links, sexual relations, disease transmission, airline routes, etc.

Social Networks Analysis

Social network:

Nodes

Edges

Examples of relations: financial exchange, friends, dislike, conflict, trade, web links, sexual relations, disease transmission, airline routes, etc.

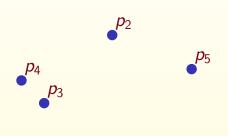
Our focus

Community discovery
Burst detection

Part II Theory of Nearest Neighbors

Nearest Neighbors Informally

To preprocess a database of *n* objects so that given a query object, one can effectively determine its nearest neighbors in database

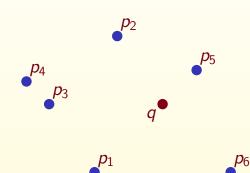

More Formally

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

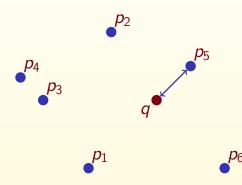

More Formally

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \ldots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$


More Formally

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

Some Solutions for NN Problem

Orchard's Algorithm LAESA Sphere Rectangle Tree k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree R*-tree Burkhard-Keller tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree vps-tree M-tree Locality-Sensitive Hashing SS-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree

Generalized hyperplane tree

Hybrid tree Slim tree tree

Spill Tree Fixed queries tree X-tree **k-d** Balltree Quadtree Octree

Post-office tree

Part III Topics for Experimental Projects

E1 Recommendations for Blog Posts

Available information:

Friendship graph
Comments, hyperlinks
Keywords of interests, post content

Task: For every user recommend 10 posts from last day that seems to be the most interesting for him/her

E2 CTR Prediction

Available information:

Click-or-not bipartite graph

Task: Predict click-through rate for given pair "user-ad"

E3 Social Networks Visualization

Input:

Friendship graph

Similarity:

Number of joint friends Length of shortest path

E3 Social Networks Visualization

Input:

Friendship graph

Similarity:

Number of joint friends Length of shortest path

Task:

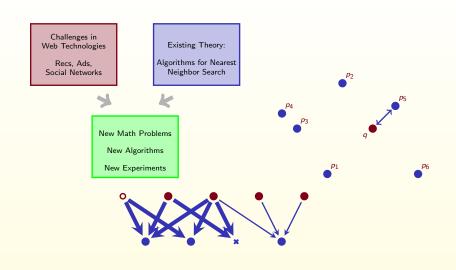
Construct embedding into 2D that put similar people close to each other

E4 Disorder Analysis

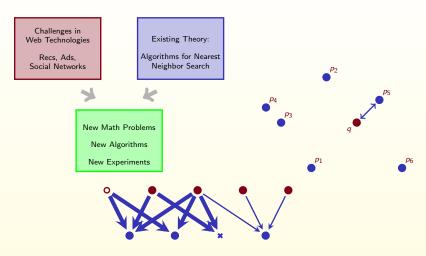
Disorder inequality for some constant *D*:

$$\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$$

E4 Disorder Analysis


Disorder inequality for some constant *D*:

$$\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$$


Tasks:

- Compute disorder values for various datasets
- Implement disorder-based algorithms for NNS
- Study their performance

Last Slide

Last Slide

Thanks for your attention! Questions?