Association Rules, Min-Hashing and Nearest Neighbors for Sparse Vectors

Yury Person

IPAM \& Humboldt University Berlin
October 31, 2007

Outline

Association Rules

Min-Hashing

Nearest Neighbors for Sparse Vectors

Problem Introduction

A database of some retail company consists of transactions which contain items bought together. The question is to derive frequently bought itemsets and relations among them.

Example

Many people buy bread, butter and milk together. An association rule would be $\{$ bread, butter $\} \rightarrow$ milk, if most the transactions, when bread and butter was bought, also contained item milk.

Formal Statement of the problem I

- A set \mathcal{I} of m items: $\left\{i_{1}, \ldots, i_{m}\right\}$.
- A family \mathcal{D} of transactions: $\forall T \in \mathcal{D} T \subseteq \mathcal{I}$.
- $s, c \in[0,100]$

Here we consider only simple association rules:
Definition (Association Rule)
$X \rightarrow\{y\}$, where $X \subseteq \mathcal{I}$ and $y \in \mathcal{I}$.

Formal Statement of the problem II

Definition (Confidence\& Support)

- We say that an association rule $X \rightarrow\{y\}$ has confidence at least c, if $c \%$ of transactions in \mathcal{D} that contain X, also contain y.
- The rule $X \rightarrow\{y\}$ has support s in the transaction set \mathcal{D} if at least $s \%$ of all transactions contain $X \cup\{y\}$.

Problem
Find all association rules in \mathcal{D} with support at least s and confidence c.

Problem Decomposition: 2 steps

1. Find all large itemsets, i.e. those of support at least s.
2. Generate from these large itemsets all association rules that have confidence at least c.

Problem Decomposition: 2 steps

1. Find all large itemsets,i.e. those of support at least s.
2. Generate from these large itemsets all association rules that have confidence at least c.

The second step is straightforward!

First Step: Algorithm Apriori

1 initialization: $L_{1}=$ \{large 1-itemsets $\}$;
2 for ($k=2 ; L_{k-1} \neq \emptyset ; k++$) do
$3 \quad C_{k}=$ apriori-gen $\left(L_{k-1}\right)$;//New candidates;
4 for all transactions $T \in \mathcal{D}$ do
$5 \quad C_{T}=\operatorname{subset}\left(C_{k}, T\right) ; / /$ Candidates contained in T;
6 for all candidates $c \in C_{T}$ do
7
8
9 end
10
$L_{k}=\left\{c \in C_{k} \mid c\right.$. count \geq minsup $\} ;$
11 end
12 Answer $=\cup_{k} L_{k}$;

Candidate Generation apriori-gen

- Join step insert into C_{k};
select p.item, , p.item ${ }_{2}$, , .item $_{k-1}$, q. item $_{k-1}$;
from $L_{k-1} p, L_{k-1} q$;
where p. item $_{1}=q$. item $_{1}, \ldots$, p.item ${ }_{k-2}=$ q.item ${ }_{k-2}$, p.item $_{k-1}<$
q. item $_{k-1}$;

Candidate Generation apriori-gen

- Join step insert into C_{k};
select p.item, , p.item ${ }_{2}$, , p.item ${ }_{k-1}$, q.item it $_{k-1}$;
from $L_{k-1} p, L_{k-1} q$;

q. item $_{k-1}$;
- Prune step
for every itemsets $c \in C_{k}$ do
for every $(k-1)$-subset s of c do if $\left(s \notin L_{k-1}\right)$ then delete c from C_{k}

```
        end
        end
end
```

The procedure generates a superset of the set of all large k-itemsets.

Example

- Let $L_{3}=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{1,3,5\},\{2,3,4\}\}$
- After the Join step: $C_{4}=\{\{1,2,3,4\},\{1,3,4,5\}\}$
- The Prune step deletes the itemset $\{1,3,4,5\}$ because $\{1,4,5\} \notin C_{4}$

Modifications of the Algorithm

- generalize association rules to $X \rightarrow Y$ with $X, Y \subset \mathcal{I}, X \cap Y=\emptyset$
- speed-up by testing only transactions $T \in \mathcal{D}$ that make sense
- No running time guarantees, but good performance in practice

Identifying Duplicates on the Web\& Document similarity

Problem
Given a copy of the web. Identify near duplicates of the web pages.

Identifying Duplicates on the Web\& Document similarity

Problem

Given a copy of the web. Identify near duplicates of the web pages.
Idea
First compute sketches of every document. Every sketch is small. Introducing appropriate measure(Jaccard) identify duplicates.

ω-shingling

Definition

Given a document \mathcal{D}. A contiguous subsequence of ω words in \mathcal{D} is called an ω-shingle. ω-shingling of \mathcal{D} is a (multi-)set $S(\mathcal{D}, \omega)$ of all ω-shingles in \mathcal{D}

ω-shingling

Definition

Given a document \mathcal{D}. A contiguous subsequence of ω words in \mathcal{D} is called an ω-shingle. ω-shingling of \mathcal{D} is a (multi-)set $S(\mathcal{D}, \omega)$ of all ω-shingles in \mathcal{D}

Example

- $\mathcal{D}=($ a, rose, is, a, rose, is, a, rose $)$
- 4-shingling is
$S(\mathcal{D}, 4)=\{(a$, rose, is, $a),($ rose, is, a, rose $),($ is, a, rose, is $)\}$

Resemblance, Containment

Given two documents, A and B. We fix a shingle of size ω.
Definition
We call

$$
r_{\omega}(A, B)=\frac{|S(A, \omega) \cap S(B, \omega)|}{|S(A, \omega) \cup S(B, \omega)|}
$$

the resemblance of A and B.

Resemblance, Containment

Given two documents, A and B. We fix a shingle of size ω.
Definition
We call

$$
r_{\omega}(A, B)=\frac{|S(A, \omega) \cap S(B, \omega)|}{|S(A, \omega) \cup S(B, \omega)|}
$$

the resemblance of A and B.
and
Definition
We call

$$
c_{\omega}(A, B)=\frac{|S(A, \omega) \cap S(B, \omega)|}{|S(A, \omega)|}
$$

the containment of A in B.
The resemblance captures the notion of 'roughly the same' !

Computing Sketches

Let Ω be a universe of all shingles of size ω. Assume that Ω is totally ordered. Further let $\operatorname{MIN}_{s}(A)$ denote the s smallest elements of A.

Definition
Given the document $A, s \in \mathbb{N}$ and $\pi: \Omega \rightarrow \Omega$ permutation chosen uniformly at random. We define the sketch $M(A)$ of A of size s to be the s smallest elements among A under π :

$$
M(A)=\operatorname{MIN}_{s}\{\pi(A)\}
$$

Computing Sketches

Let Ω be a universe of all shingles of size ω. Assume that Ω is totally ordered. Further let $\operatorname{MIN}_{s}(A)$ denote the s smallest elements of A.

Definition
Given the document $A, s \in \mathbb{N}$ and $\pi: \Omega \rightarrow \Omega$ permutation chosen uniformly at random. We define the sketch $M(A)$ of A of size s to be the s smallest elements among A under π :

$$
M(A)=\operatorname{MIN}_{s}\{\pi(A)\}
$$

Theorem (A.Broder'1997)

$$
r_{\omega}(A, B)=\frac{\left|M I N_{s}(M(A) \cup M(B)) \cap M(A) \cap M(B)\right|}{\left|M I N_{s}(M(A) \cup M(B))\right|}
$$

Min-wise Independent families

Problem

In practice, it is impossible to choose π uniformly at random!

Min-wise Independent families

Problem

In practice, it is impossible to choose π uniformly at random!
Definition (Min-wise independent family)
A family $\mathcal{F} \subseteq S_{n}$ is min-wise independent if for any set
$X \subset\{1, \ldots, n\}$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$
\operatorname{Pr}(\min (\pi(X))=\pi(x))=\frac{1}{|X|}
$$

Min-wise Independent families

Problem

In practice, it is impossible to choose π uniformly at random!
Definition (Min-wise independent family)
A family $\mathcal{F} \subseteq S_{n}$ is min-wise independent if for any set
$X \subset\{1, \ldots, n\}$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$
\operatorname{Pr}(\min (\pi(X))=\pi(x))=\frac{1}{|X|}
$$

Definition (ε-approximately min-wise independent family)
A family $\mathcal{F} \subseteq S_{n}$ is ε-approximately min-wise independent if for any set $X \subset\{1, \ldots, n\}$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$
\left|\operatorname{Pr}(\min (\pi(X))=\pi(x))-\frac{1}{|X|}\right| \leq \frac{\varepsilon}{|X|}
$$

Bounds for Minimum Size Families I

Theorem

\mathcal{F} is at least as large as the least common multiple of the numbers $1,2, \ldots, n$ and hence $|\mathcal{F}| \geq e^{n-o(n)}$.

Proof.

- take any subset X of $\{1, \ldots, n\},|X|=j$
- every element of X must be the minimum under \mathcal{F} the same number of times, so j divides $|\mathcal{F}|$
- use Prime Number Theorem to derive the lower bound of $e^{n-o(n)!}$

Bounds for Minimum Size Families II

Theorem
There exists \mathcal{F} of size

$$
\prod_{i=1}^{\lceil\log n\rceil}\binom{\left\lceil n / 2^{i-1}\right\rceil}{\left\lceil n / 2^{i}\right\rceil}
$$

Bounds for Minimum Size Families II

Theorem
There exists \mathcal{F} of size

$$
\prod_{i=1}^{\lceil\log n\rceil}\binom{\left\lceil n / 2^{i-1}\right\rceil}{\left\lceil n / 2^{i}\right\rceil}
$$

Exercise

Prove that this bound is divisible by the least common multiple of the first n natural numbers.

Existential Upper Bound for ε-approximate Families

Theorem
There exist families of size $O\left(\frac{n^{2}}{\varepsilon^{2}}\right)$ that are approximately minwise independent with high probability.
In practice, one cannot conveniently represent a random permutation!

Existential Upper Bound for ε-approximate Families

Theorem
There exist families of size $O\left(\frac{n^{2}}{\varepsilon^{2}}\right)$ that are approximately minwise independent with high probability.
In practice, one cannot conveniently represent a random permutation!

Problem
Construct such family!

Existential Upper Bound for ε-approximate Families

Theorem
There exist families of size $O\left(\frac{n^{2}}{\varepsilon^{2}}\right)$ that are approximately minwise independent with high probability.
In practice, one cannot conveniently represent a random permutation!

Problem
Construct such family!
One tries families of linear permutations which behave good in practice.

Problem Introduction

Problem

There are n people and m books. Every person likes exactly k books.
Given another person Q that likes k books, find a person in the database that likes maximum possible number of books.
Constraints:

- $k \ll n, m$
- query time is poly $(k, \log n)$
- preprocessing time: poly (k, n, m)

Our Approach I

Utilize the idea of characteristic itemsets:

- there are $O(p o l y(k) * n)$ characteristic itemsets (of books)
- every person likes at least one characteristic itemset
- every characteristic itemset is appreciated by poly (k) persons
- every person shares at least one characteristic itemset with each of its nearest neighbors

Our Approach II

1. Given database, extract $O(n)$ charactersitic itemsets
2. from the query Q distill characteristic itemsets
3. compute nearest neighbors for Q

Thank you \& Happy Halloween!

