
Algorithms for

Similarity Search

Yury Lifshits
Yahoo! Research

ESSCASS 2010

1 / 27

Outline

Similarity Search

1 High-level overview

2 Locality-sensitive hashing

3 Combinatorial approach

Content Optimization

1 High-level overview

2 Explore/exploit for Yahoo! frontpage

3 Ediscope project for social engagement analysis
2 / 27

Similarity Search: an Example

Input: Set of objects

Task: Preprocess it

Query: New object

Task: Find the most

similar one in the dataset

Most similar

3 / 27

More Formally

Search space: object domain U, similarity function σ

Input: database S = {p1, . . . , pn} ⊆ U
Query: q ∈ U
Task: find argmaxpi σ(pi , q)

p1

p2

p3

p4
p5

p6

q

4 / 27



Applications (1/5) Information Retrieval

Content-based retrieval (magnetic resonance
images, tomography, CAD shapes, time series, texts)

Spelling correction

Geographic databases (post-office problem)

Searching for similar DNA sequences

Related pages web search

Semantic search, concept matching

5 / 27

Applications (2/5) Machine Learning

kNN classification rule: classify by majority of k
nearest training examples. E.g. recognition of faces,
fingerprints, speaker identity, optical characters

Nearest-neighbor interpolation

6 / 27

Applications (3/5) Data Mining

Near-duplicate detection

Plagiarism detection

Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)

Key difference:
Mostly, off-line problems

7 / 27

Applications (4/5) Bipartite Problems

Recommendation systems (most relevant movie to a
set of already watched ones)

Personalized news aggregation (most relevant news
articles to a given user’s profile of interests)

Behavioral targeting (most relevant ad for displaying
to a given user)

Key differences:
Query and database objects have different nature
Objects are described by features and connections

8 / 27



Applications (5/5) As a Subroutine

Coding theory (maximum likelihood decoding)

MPEG compression (searching for similar fragments
in already compressed part)

Clustering

9 / 27

Variations of the Computation Task
Additional requirements:

Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function

Related problems:

Nearest neighbor: nearest museum to my hotel

Reverse nearest neighbor: all museums for which my hotel is the nearest
one

Range queries: all museums up to 2km from my hotel

Closest pair: closest pair of museum and hotel

Spatial join: pairs of hotels and museums which are at most 1km apart

Multiple nearest neighbors: nearest museums for each of these hotels

Metric facility location: how to build hotels to minimize the sum of
“museum — nearest hotel” distances

10 / 27

Brief History

1908 Voronoi diagram

1967 kNN classification rule by Cover and Hart

1973 Post-office problem posed by Knuth

1997 The paper by Kleinberg, beginning of provable
upper/lower bounds

2006 Similarity Search book by Zezula, Amato, Dohnal and
Batko

2008 First International Workshop on Similarity Search

2009 Amazon acquires SnapTell

11 / 27

Ideal algorithm

+ Any data model

+ Any dimension

+ Any dataset

+ Near-linear space

+ Logarithmic search time

+ Exact nearest neighbor

+ Zero probability of error

+ Provable efficiency

12 / 27



Nearest Neighbors in Theory

Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree Geometric
near-neighbor access tree Excluded middle vantage point

forest mvp-tree Fixed-height fixed-queries tree AESA
Vantage-point tree LAESA R∗-tree Burkhard-Keller

tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio

tree Metric tree vps -tree M-tree Locality-Sensitive
Hashing SS-tree R-tree Spatial approximation tree

Multi-vantage point tree Bisector tree mb-tree Cover tree Hybrid tree

Generalized hyperplane tree Slim tree Spill Tree Fixed queries tree

X-tree k-d tree Balltree Quadtree Octree Post-office tree

13 / 27

Theory: Four Techniques
Branch and bound

(p1, p2, p3, p4, p5)

(p1, p2, p3) (p4, p5)

(p1, p3) p2 p4 p5

p1p3

Greedy walks

q
p1

p2

p3

p4

Mappings: LSH,
random projections, minhashing

Epsilon nets
Works for small intrinsic dimension

14 / 27

Future of Similarity Search

Cloud implementation

Hadoop stack

API (as in OpenCalais, Google Language API,
WolframAlpha)

Focus on memory

15 / 27

Locality Sensitive Hashing

16 / 27



LSH vs. Ideal algorithm

– Any data model

– Exact nearest neighbor

– Zero probability of error

+ Provable efficiency

+ Any dimension

+ Any dataset

+∗ Near-linear space

+∗ Logarithmic search time

17 / 27

Approximate Algorithms

c-Approximate r-range query: if there at least one
p ∈ S : d(q, p) ≤ r return some p′ : d(q, p′) ≤ cr

q

r
cr

c-Approximate nearest neighbor query: return some
p′ ∈ S : d(p′, q) ≤ crNN , where rNN = minp∈S d(p, q)

Today we consider only range queries
18 / 27

Today’s Focus

Data model:

d-dimensional Euclidean space: Rd

Our goal: provable performance bounds

Sublinear search time, near-linear preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing

19 / 27

Locality-Sensitive Hashing:

General Scheme

20 / 27



Definition of LSH

Indyk&Motwani’98

Locality-sensitive hash family H with parameters
(c , r ,P1,P2):

If ‖p − q‖ ≤ r then PrH[h(p) = h(q)] ≥ P1

If ‖p − q‖ ≥ cr then PrH[h(p) = h(q)] ≤ P2

21 / 27

The Power of LSH

Notation: ρ = log(1/P1)
log(1/P2) < 1

Theorem

Any (c , r ,P1,P2)-locality-sensitive hashing leads to an
algorithm for c-approximate r -range search with
(roughly) nρ query time and n1+ρ preprocessing space

Proof in the next four slides

22 / 27

LSH: Preprocessing

Composite hash function: g(p) =< h1(p), . . . , hk(p) >

Preprocessing with parameters L, k :

1 Choose at random L composite hash functions of k
components each

2 Hash every p ∈ S into buckets g1(p), . . . , gL(p)

Preprocessing space: O(Ln)

23 / 27

LSH: Search

1 Compute g1(q), . . . , gL(q)

2 Go to corresponding buckets and explicitly check
d(p, q) ≤?cr for every point there

3 Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)

24 / 27



LSH: Analysis (1/2)
1− x ≤ e−x for x ∈ [0, 1]

In order to have probability of error at most δ we set k , L such that:

The expected number of cr -far objects to be tried is Pk
2 Ln = L

The chance to never be hashed to the same bucket as q for a
true r -neighbor (1− Pk

1 )L ≤ e−Pk
1 L is at most δ

Rewriting these constraints:

Pk
2 n = 1 L = P−k

1 (−logδ)

25 / 27

LSH: Analysis (2/2)

Pk
2 n = 1 L = P−k1 (−logδ)

Solution:

k =
log n

log(1/P2)

L = P
− log n

log(1/P2)

1 log(1/δ) = n
log(1/P1)
log(1/P2) log(1/δ) = nρ log(1/δ)

Preprocessing space O(Ln) ≈ n1+ρ+o(1)

Search O(L) ≈ nρ+o(1)

26 / 27

LSH Based on p-Stable Distributions
Datar, Immorlica, Indyk and Mirrokni’04

h(p) = bp · r
w

+ bc

r : random vector, every coordinate comes from N(0, 1)
b: random shift from [0, 1]
w : quantization width

ρ(c) <
1

c

27 / 27


	Welcome to Nearest Neighbors!
	Locality Sensitive Hashing
	General Scheme

