Algorithms for
Similarity Search

Yury Lifshits
Yahoo! Research

ESSCASS 2010

Similarity Search: an Example

Input: Set of objects

Task: Preprocess it

Query: New object

Task: Find the most

similar one in the dataset

Outline

Similarity Search

@ High-level overview
© Locality-sensitive hashing

© Combinatorial approach

Content Optimization

@ High-level overview
@ Explore/exploit for Yahoo! frontpage

@ Ediscope project for social engagement analysis

More Formally

Search space: object domain U, similarity function o
Input: database S = {p;,...,p,} CU

Query: g €U

Task: find argmax, o(p;, q)
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Applications (1/5) Information Retrieval

e Content-based retrieval (magnetic resonance
images, tomography, CAD shapes, time series, texts)

@ Spelling correction

@ Geographic databases (post-office problem)
@ Searching for similar DNA sequences

@ Related pages web search

@ Semantic search, concept matching

Applications (3/5) Data Mining

@ Near-duplicate detection
@ Plagiarism detection

e Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)

Key difference:
Mostly, off-line problems

Applications (2/5) Machine Learning

@ kNN classification rule: classify by majority of k
nearest training examples. E.g. recognition of faces,
fingerprints, speaker identity, optical characters

@ Nearest-neighbor interpolation

Applications (4/5) Bipartite Problems

@ Recommendation systems (most relevant movie to a
set of already watched ones)

@ Personalized news aggregation (most relevant news
articles to a given user's profile of interests)

@ Behavioral targeting (most relevant ad for displaying
to a given user)

Key differences:
Query and database objects have different nature
Objects are described by features and connections



Applications (5/5) As a Subroutine Variations of the Computation Task

Additional requirements:

@ Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function

e Coding theory (maximum likelihood decoding) Related problems:

) ] o @ Nearest neighbor: nearest museum to my hotel
o MPEG ol pirE=slel (searChmg for similar fragments @ Reverse nearest neighbor: all museums for which my hotel is the nearest

in already compressed part) one

. Range queries: all museums up to 2km from my hotel
° CIUStermg Closest pair: closest pair of museum and hotel

Spatial join: pairs of hotels and museums which are at most 1km apart

Multiple nearest neighbors: nearest museums for each of these hotels

Metric facility location: how to build hotels to minimize the sum of
“museum — nearest hotel” distances

9/27 10/27

Brief History |deal algorithm

1908 Voronoi diagram Any data model

1967 kNN classification rule by Cover and Hart Any dimension

1973 Post-office problem posed by Knuth Any dataset

1997 The paper by Kleinberg, beginning of provable

Near-linear space
upper/lower bounds
Logarithmic search time
2006 Similarity Search book by Zezula, Amato, Dohnal and

Batko Exact nearest neighbor

2008 First International Workshop on Similarity Search Zero probability of error

+ + + + + o+ + o+

2009 Amazon acquires SnapTell Provable efficiency
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Nearest Neighbors in Theory

Sphere Rectangle Tree OrChard'S Algorlthm k-d-B tree Geometric

near-neighbor access tree Excluded middle vantage point
mvp-tree Fixed-height fixed-queries tree  AESA

forest
Vantage-point tree LAESA R-tree Burkhard-Keller
tree BBD tree Navigating Nets voronoitree Balanced aspect ratio
tree Mewictee wpwee  IVI-tree Locality-Sensitive
Hashing sstree R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree mb-tree Cover tree Hybrid tree
Generalized hyperplane tree sim tree Spill Tree Fixed queries tree
Baltree Quadtree OCtree Post-office tree

X-tree k- d tree

Future of Similarity Search

@ Cloud implementation
e Hadoop stack
e API (as in OpenCalais, Google Language API,
WolframAlpha)

@ Focus on memory

Theory: Four Techniques

Greedy walks

Branch and bound
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Mappings: LSH,
random projections, minhashing
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Locality Sensitive Hashing



LSH vs. Ideal algorithm

— Any data model
— Exact nearest neighbor

— Zero probability of error

+ Provable efficiency
-+ Any dimension

+ Any dataset

Near-linear space

+* Logarithmic search time

Today's Focus

Data model:

@ d-dimensional Euclidean space: RY

Our goal: provable performance bounds

@ Sublinear search time, near-linear preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing

Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

c-Approximate nearest neighbor query: return some
p'eS: dp,q) < crun, where ryy = minpes d(p, q)

Today we consider only range queries

Locality-Sensitive Hashing:

General Scheme



Definition of LSH

Indyk&Motwani'98

Locality-sensitive hash family H with parameters
(C7 (rg Pl, PQ)Z

o If [[p— q|| < rthen Pry[h(p) = h(q)] > P2
o If |[p— gl > cr then Pry[h(p) = h(q)] < P,

\/ |

LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >
Preprocessing with parameters L, k:

@ Choose at random L composite hash functions of k
components each

@ Hash every p € S into buckets gi(p), - .., g1(p)

Preprocessing space: O(Ln)

The Power of LSH

Notation: p = :gggﬁlg <1

Theorem

Any (c, r, P, Py)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n'** preprocessing space

Proof in the next four slides

LSH: Search

Q@ Compute g1(q),...,8:(9)

@ Go to corresponding buckets and explicitly check
d(p, q) <?cr for every point there

@ Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)



LSH: Analysis (1/2)
1—x<e*forxel0,1]
In order to have probability of error at most o we set k, L such that:

@ The expected number of cr-far objects to be tried is PXLn = L

@ The chance to never be hashed to the same bucket as g for a
true r-neighbor (1 — PK)t < e~Pil is at most &

Rewriting these constraints:

Pin=1 L = Py *(—log))

LSH Based on p-Stable Distributions

Datar, Immorlica, Indyk and Mirrokni'04

h(p) = |21+ b)

r: random vector, every coordinate comes from N(0, 1)
b: random shift from [0, 1]
w: quantization width

ol

p(c) <

LSH: Analysis (2/2)

Pin=1 L = P *(—logd)

Solution:
log n

~ log(1/Py)

log n log(1/Py)

L= P, ™0™ og(1/6) = n®=/P) log(1/6) = n” log(1/4)

k

Preprocessing space O(Ln) ~ pl+eto(1)
Search O(L) ~ npto(l)
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