Algorithms for
Similarity Search

Yury Lifshits
Yahoo! Research

ESSCASS 2010

Outline

Similarity Search

@ High-level overview
© Locality-sensitive hashing

© Combinatorial approach

Content Optimization

@ High-level overview
@ Explore/exploit for Yahoo! frontpage

@ Ediscope project for social engagement analysis

Similarity Search: an Example

Input: Set of objects

Task: Preprocess it

Similarity Search: an Example

Input: Set of objects

Task: Preprocess it

Query: New object

Task: Find the most

similar one in the dataset

Similarity Search: an Example

Input: Set of objects

Task: Preprocess it

Most

Query: New object
Task: Find the most

similar one in the dataset

similar

27

More Formally

Search space: object domain U, similarity function o
Input: database S = {p1,...,p,} CU

Query: g€ U

Task: find argmax, o(p;,q)

.Pz

.P4 .P5

.P3

P1 Pe

More Formally

Search space: object domain U, similarity function o
Input: database S = {p1,...,p,} CU

Query: g€ U

Task: find argmax, o(p;,q)

.Pz

.P4p]
.3

More Formally

Search space: object domain U, similarity function o
Input: database S = {p1,...,p,} CU
Query: g€ U
Task: find argmax, o(p;,q)
.Pz
Ps

.P4p ‘/t
e

q

P1 Pe

Applications (1/5) Information Retrieval

e Content-based retrieval (magnetic resonance
images, tomography, CAD shapes, time series, texts)

@ Spelling correction
@ Geographic databases (post-office problem)

@ Searching for similar DNA sequences

Related pages web search

@ Semantic search, concept matching

Applications (2/5) Machine Learning

@ kNN classification rule: classify by majority of k
nearest training examples. E.g. recognition of faces,
fingerprints, speaker identity, optical characters

@ Nearest-neighbor interpolation

Applications (3/5) Data Mining

@ Near-duplicate detection
@ Plagiarism detection

e Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)

Applications (3/5) Data Mining

@ Near-duplicate detection
@ Plagiarism detection

e Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)

Key difference:
Mostly, off-line problems

Applications (4/5) Bipartite Problems

@ Recommendation systems (most relevant movie to a
set of already watched ones)

@ Personalized news aggregation (most relevant news
articles to a given user's profile of interests)

@ Behavioral targeting (most relevant ad for displaying
to a given user)

Applications (4/5) Bipartite Problems

@ Recommendation systems (most relevant movie to a
set of already watched ones)

@ Personalized news aggregation (most relevant news
articles to a given user's profile of interests)

@ Behavioral targeting (most relevant ad for displaying
to a given user)

Key differences:
Query and database objects have different nature
Objects are described by features and connections

Applications (5/5) As a Subroutine

@ Coding theory (maximum likelihood decoding)

@ MPEG compression (searching for similar fragments
in already compressed part)

@ Clustering

Variations of the Computation Task

Additional requirements:

@ Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function

N
~

Variations of the Computation Task

Additional requirements:

@ Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function

Related problems:
@ Nearest neighbor: nearest museum to my hotel

@ Reverse nearest neighbor: all museums for which my hotel is the nearest
one

Range queries: all museums up to 2km from my hotel
Closest pair: closest pair of museum and hotel
Spatial join: pairs of hotels and museums which are at most 1km apart

Multiple nearest neighbors: nearest museums for each of these hotels

Metric facility location: how to build hotels to minimize the sum of
“museum — nearest hotel" distances

10/27

Brief History

1908 Voronoi diagram

11 /27

Brief History

1908 Voronoi diagram
1967 kNN classification rule by Cover and Hart

Brief History

1908 Voronoi diagram
1967 kNN classification rule by Cover and Hart
1973 Post-office problem posed by Knuth

Brief History

1908 Voronoi diagram
1967 kNN classification rule by Cover and Hart
1973 Post-office problem posed by Knuth

1997 The paper by Kleinberg, beginning of provable
upper/lower bounds

Brief History

1908 Voronoi diagram
1967 kNN classification rule by Cover and Hart
1973 Post-office problem posed by Knuth

1997 The paper by Kleinberg, beginning of provable
upper/lower bounds

2006 Similarity Search book by Zezula, Amato, Dohnal and
Batko

Brief History

1908
1967
1973
1997

2006

2008

Voronoi diagram
kNN classification rule by Cover and Hart
Post-office problem posed by Knuth

The paper by Kleinberg, beginning of provable
upper/lower bounds

Similarity Search book by Zezula, Amato, Dohnal and
Batko

First International Workshop on Similarity Search

Brief History

1908
1967
1973
1997

2006

2008
2009

Voronoi diagram
kNN classification rule by Cover and Hart
Post-office problem posed by Knuth

The paper by Kleinberg, beginning of provable
upper/lower bounds

Similarity Search book by Zezula, Amato, Dohnal and
Batko

First International Workshop on Similarity Search

Amazon acquires SnapTell

|deal algorithm

+ o+ + + + + + +

Any data model

Any dimension

Any dataset

Near-linear space
Logarithmic search time
Exact nearest neighbor
Zero probability of error

Provable efficiency

Nearest Neighbors in Theory

Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree Geometric
near-neighbor access tree Excluded middle vantage point
forest mvp-tree Fixed-height fixed-queries tree AESA
Vantage-point tree LAESA R'tree Burkhard-Keller
tree BBD tree Navigating Nets voronoitree Balanced aspect ratio
tree Meictee wiwee IVI-Tree Locality-Sensitive
Hashing ss-tree R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree mb-tree COVEr tree Hybrid tree
Generalized hyperplane tree simtree Spill Tree Fixed queries tree

X-tree k—d tree saitree Quadtree Octree Post-office tree

Theory: Four Techniques

Branch and bound

(p1, P2, P3, P4 P5)

/ N\

(p1,p2,p3) (Pasps)

ANA

(P1;p3) P2 Pa Ps

/ \Pl

P3

Mappings: LSH,
random projections, minhashing

Eeee,

Greedy walks

Ly
\ A
A]
AY
\ ! »
1
\ A
\ ! \
\ , '.p%-.)
\
\] ’
1 ’ P3
‘\ B ’ I
Wi \s il
M, v 9
---"p
4

Epsilon nets
Works for small intrinsic dimension

14 /27

Future of Similarity Search

@ Cloud implementation

e Hadoop stack

e API (as in OpenCalais, Google Language API,
WolframAlpha)

@ Focus on memory

Locality Sensitive Hashing

LSH vs. Ideal algorithm

— Any data model
— Exact nearest neighbor

— Zero probability of error

+ Provable efficiency
-+ Any dimension

+ Any dataset

+* Near-linear space

Logarithmic search time

Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

18 /27

Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

c-Approximate nearest neighbor query: return some
p'eS: d(p,q) < crun, where ryy = minpes d(p, q)

Today we consider only range queries

Today's Focus

Data model:

@ d-dimensional Euclidean space: R?

Today's Focus

Data model:

@ d-dimensional Euclidean space: R?

Our goal: provable performance bounds

@ Sublinear search time, near-linear preprocessing space

Today's Focus

Data model:

@ d-dimensional Euclidean space: R?

Our goal: provable performance bounds

@ Sublinear search time, near-linear preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing

Locality-Sensitive Hashing:

General Scheme

Definition of LSH
Indyk&Motwani'98

Locality-sensitive hash family H with parameters
(C7r7P17P2):

o If [p— gl < r then 2ry[h(p) = h(q)] > P1
o If ||p— q|| > cr then Pry[h(p) = h(q)] < P,

\/ |

21 /27

The Power of LSH

Notation: p = :gigﬁlg <1

Theorem

Any (c, r, Py, Py)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space

The Power of LSH

log(1/P1)

og(1/Ps) < 1

Notation: p =

Theorem

Any (c, r, Py, P;)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space

Proof in the next four slides

LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >

LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >
Preprocessing with parameters L, k:

@ Choose at random L composite hash functions of k
components each

@ Hash every p € S into buckets gi(p), ..., g.(p)

Preprocessing space: O(Ln)

LSH: Search

@ Compute g1(q),--.,g.(q)

@ Go to corresponding buckets and explicitly check
d(p, q) <?cr for every point there

@ Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)

LSH: Analysis (1/2)

1—x<e™forxel01]

LSH: Analysis (1/2)
1—x<e ™ forxel0,1]
In order to have probability of error at most J we set k, L such that:

@ The expected number of cr-far objects to be tried is PxLn = L

@ The chance to never be hashed to the same bucket as g for a
true r-neighbor (1 — Pf)t < e "1l is at most §

LSH: Analysis (1/2)
1—x<e ™ forxel0,1]
In order to have probability of error at most J we set k, L such that:

@ The expected number of cr-far objects to be tried is PxLn = L

@ The chance to never be hashed to the same bucket as g for a
true r-neighbor (1 — Pf)t < e "1l is at most §

Rewriting these constraints:

Pin=1 L = Py *(—logd)

LSH: Analysis (2/2)

Pin=1 L = P ¥(—log))

LSH: Analysis (2/2)

Pin=1 L = P ¥(—log))

Solution:
log n

~ log(1/P)

LSH: Analysis (2/2)

Pin=1 L = P ¥(—log))

Solution:
log n

~ log(1/P)

_ _logn log(1/Py)

L = P, "™ |og(1/5) = n*st/P) log(1/5) = n”log(1/9)

LSH: Analysis (2/2)

IS L = Pr¥(~logd)

Solution:
log n

"~ log(1/P)

og(1/P1)
L = Pl log(1/P5) |Og(1/5) — nm |og(]_/5) =n’ |Og(1/5)

Preprocessing space O(Ln) ~ n'*r+o(l)
Search O(L) = nPto(l)

LSH Based on p-Stable Distributions

Datar, Immorlica, Indyk and Mirrokni'04

h(p) = == + b)

r: random vector, every coordinate comes from N(0, 1)
b: random shift from [0, 1]
w: quantization width

LSH Based on p-Stable Distributions

Datar, Immorlica, Indyk and Mirrokni'04

h(p) = == + b)

r: random vector, every coordinate comes from N(0, 1)
b: random shift from [0, 1]
w: quantization width

	Welcome to Nearest Neighbors!
	Locality Sensitive Hashing
	General Scheme

