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Outline

Similarity Search

@ High-level overview
© Locality-sensitive hashing

© Combinatorial approach

Content Optimization

@ High-level overview
@ Explore/exploit for Yahoo! frontpage

@ Ediscope project for social engagement analysis
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More Formally

Search space: object domain U, similarity function o
Input: database S = {p1,...,p,} CU

Query: g€ U

Task: find argmax, o(p;,q)
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Applications (1/5) Information Retrieval

e Content-based retrieval (magnetic resonance
images, tomography, CAD shapes, time series, texts)

@ Spelling correction
@ Geographic databases (post-office problem)

@ Searching for similar DNA sequences

Related pages web search

@ Semantic search, concept matching



Applications (2/5) Machine Learning

@ kNN classification rule: classify by majority of k
nearest training examples. E.g. recognition of faces,
fingerprints, speaker identity, optical characters

@ Nearest-neighbor interpolation



Applications (3/5) Data Mining

@ Near-duplicate detection
@ Plagiarism detection

e Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)



Applications (3/5) Data Mining

@ Near-duplicate detection
@ Plagiarism detection

e Computing co-occurrence similarity (for detecting
synonyms, query extension, machine translation...)

Key difference:
Mostly, off-line problems



Applications (4/5) Bipartite Problems

@ Recommendation systems (most relevant movie to a
set of already watched ones)

@ Personalized news aggregation (most relevant news
articles to a given user's profile of interests)

@ Behavioral targeting (most relevant ad for displaying
to a given user)



Applications (4/5) Bipartite Problems

@ Recommendation systems (most relevant movie to a
set of already watched ones)

@ Personalized news aggregation (most relevant news
articles to a given user's profile of interests)

@ Behavioral targeting (most relevant ad for displaying
to a given user)

Key differences:
Query and database objects have different nature
Objects are described by features and connections



Applications (5/5) As a Subroutine

@ Coding theory (maximum likelihood decoding)

@ MPEG compression (searching for similar fragments
in already compressed part)

@ Clustering



Variations of the Computation Task

Additional requirements:

@ Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function
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Variations of the Computation Task

Additional requirements:

@ Dynamic nearest neighbors: moving objects, deletes/inserts, changing
similarity function

Related problems:
@ Nearest neighbor: nearest museum to my hotel

@ Reverse nearest neighbor: all museums for which my hotel is the nearest
one

Range queries: all museums up to 2km from my hotel
Closest pair: closest pair of museum and hotel
Spatial join: pairs of hotels and museums which are at most 1km apart

Multiple nearest neighbors: nearest museums for each of these hotels

Metric facility location: how to build hotels to minimize the sum of
“museum — nearest hotel" distances
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Brief History

1908 Voronoi diagram
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Brief History

1908
1967
1973
1997

2006

2008
2009

Voronoi diagram
kNN classification rule by Cover and Hart
Post-office problem posed by Knuth

The paper by Kleinberg, beginning of provable
upper/lower bounds

Similarity Search book by Zezula, Amato, Dohnal and
Batko

First International Workshop on Similarity Search

Amazon acquires SnapTell



|deal algorithm

+ o+ + + + + + +

Any data model

Any dimension

Any dataset

Near-linear space
Logarithmic search time
Exact nearest neighbor
Zero probability of error

Provable efficiency



Nearest Neighbors in Theory

Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree Geometric
near-neighbor access tree Excluded middle vantage point
forest mvp-tree Fixed-height fixed-queries tree AESA
Vantage-point tree LAESA R'tree Burkhard-Keller
tree BBD tree Navigating Nets voronoitree Balanced aspect ratio
tree Meictee wiwee IVI-Tree Locality-Sensitive
Hashing ss-tree R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree  mb-tree COVEr tree Hybrid tree
Generalized hyperplane tree simtree Spill Tree Fixed queries tree

X-tree k—d tree saitree Quadtree Octree Post-office tree



Theory: Four Techniques

Branch and bound

(p1, P2, P3, P4 P5)

/ N\

(p1,p2,p3)  (Pasps)

ANA

(P1;p3) P2 Pa Ps

/ \Pl

P3

Mappings: LSH,
random projections, minhashing

Eeee,

Greedy walks

Ly
\ A
A ]
AY
\ ! »
1
\ A
\ ! \
\ , '.p%-.)
\
\ ] ’
1 ’ P3
‘\ B ’ I
Wi \s il
M, v 9
---"p
4

Epsilon nets
Works for small intrinsic dimension
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Future of Similarity Search

@ Cloud implementation

e Hadoop stack

e API (as in OpenCalais, Google Language API,
WolframAlpha)

@ Focus on memory



Locality Sensitive Hashing



LSH vs. Ideal algorithm

— Any data model
— Exact nearest neighbor

— Zero probability of error

+ Provable efficiency
-+ Any dimension

+ Any dataset

+* Near-linear space

Logarithmic search time



Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr
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Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

c-Approximate nearest neighbor query: return some
p'eS: d(p,q) < crun, where ryy = minpes d(p, q)

Today we consider only range queries
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Data model:

@ d-dimensional Euclidean space: R?
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Today's Focus

Data model:

@ d-dimensional Euclidean space: R?

Our goal: provable performance bounds

@ Sublinear search time, near-linear preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing



Locality-Sensitive Hashing:

General Scheme



Definition of LSH
Indyk&Motwani'98

Locality-sensitive hash family H with parameters
(C7r7P17P2):

o If [p— gl < r then 2ry[h(p) = h(q)] > P1
o If ||p— q|| > cr then Pry[h(p) = h(q)] < P,

\/ |
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The Power of LSH

Notation: p = :gigﬁlg <1

Theorem

Any (c, r, Py, Py)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space




The Power of LSH

log(1/P1)

og(1/Ps) < 1

Notation: p =

Theorem

Any (c, r, Py, P;)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space

Proof in the next four slides



LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >



LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >
Preprocessing with parameters L, k:

@ Choose at random L composite hash functions of k
components each

@ Hash every p € S into buckets gi(p), ..., g.(p)

Preprocessing space: O(Ln)



LSH: Search

@ Compute g1(q),--.,g.(q)

@ Go to corresponding buckets and explicitly check
d(p, q) <?cr for every point there

@ Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)



LSH: Analysis (1/2)

1—x<e™forxel01]
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1—x<e ™ forxel0,1]
In order to have probability of error at most J we set k, L such that:

@ The expected number of cr-far objects to be tried is PxLn = L

@ The chance to never be hashed to the same bucket as g for a
true r-neighbor (1 — Pf)t < e "1l is at most §



LSH: Analysis (1/2)
1—x<e ™ forxel0,1]
In order to have probability of error at most J we set k, L such that:

@ The expected number of cr-far objects to be tried is PxLn = L

@ The chance to never be hashed to the same bucket as g for a
true r-neighbor (1 — Pf)t < e "1l is at most §

Rewriting these constraints:

Pin=1 L = Py *(—logd)



LSH: Analysis (2/2)

Pin=1 L = P ¥(—log))
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LSH: Analysis (2/2)

Pin=1 L = P ¥(—log))

Solution:
log n

~ log(1/P)

_ _logn log(1/Py)

L = P, "™ |og(1/5) = n*st/P) log(1/5) = n”log(1/9)




LSH: Analysis (2/2)

IS L = Pr¥(~logd)

Solution:
log n

"~ log(1/P)

og(1/P1)
L = Pl log(1/P5) |Og(1/5) — nm |og(]_/5) =n’ |Og(1/5)

Preprocessing space O(Ln) ~ n'*r+o(l)
Search O(L) = nPto(l)



LSH Based on p-Stable Distributions

Datar, Immorlica, Indyk and Mirrokni'04

h(p) = == + b)

r: random vector, every coordinate comes from N(0, 1)
b: random shift from [0, 1]
w: quantization width
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