Combinatorial Framework for

 Similarity SearchYury Lifshits
Yahoo! Research

ESSCASS 2010

Revision: Basic Assumptions

In theory:
Triangle inequality
Doubling dimension is $o(\log n)$

Typical web dataset has separation effect
For almost all $i, j: \quad 1 / 2 \leq d\left(p_{i}, p_{j}\right) \leq 1$

Classic methods fail:

Branch and bound algorithms visit every object
Doubling dimension is at least $\log n / 2$

Revision: Similarity Function

Contributing factors for paper recommendation:

Similarity is high when:

\# of chains is high, chains are short, chains are heavy

History

Navin Goyal, YL, Hinrich Schütze, WSDM 2008:

- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- Nearest neighbor algorithm

YL, Shengyu Zhang, SODA 2009:

- Better nearest neighbor search
- Detecting near-duplicates, navigability for small worlds

Dominique Tschopp, Suhas Diggavi, ArXiv 2009:

- LSH-like combinatorial algorithm

Combinatorial Framework vs. Ideal

Algorithm

- Any dataset
+ Any data model
+ Any dimension
+ Exact nearest neighbor
+ Provable efficiency
+* Zero probability of error
+* Near-linear space
+* Logarithmic search time

1

Combinatorial Framework

Comparison Oracle

Outline

(1) Combinatorial Framework
(2) Combinatorial Random Walk
(3) Combinatorial Nets Algorithm
(4) Applications of Combinatorial Framework

- Dataset p_{1}, \ldots, p_{n}
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

Who is closer to $A: B$ or C ?

Disorder Inequality

Sort all objects by their similarity to p :

Dataset has disorder D if
$\forall p, r, s: \quad \operatorname{rank}_{r}(s) \leq D\left(\operatorname{rank}_{p}(r)+\operatorname{rank}_{p}(s)\right)$

Combinatorial Framework: FAQ

- Disorder of a metric space? Disorder of \mathbb{R}^{k} ?
- In what cases disorder is relatively small?
- Experimental values of D for some practical datasets?

Combinatorial Framework

$$
\begin{gathered}
= \\
\text { Comparison oracle } \\
\text { Who is closer to } \mathrm{A}: \mathrm{B} \text { or } \mathrm{C} ? \\
+ \\
\text { Disorder inequality }^{\operatorname{rank}_{r}(s) \leq D\left(\operatorname{rank}_{p}(r)+\operatorname{rank}_{p}(s)\right)}
\end{gathered}
$$

Disorder vs. Others

- If expansion rate is c, disorder constant is at most c^{2}
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of "doubling effect"

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information

Limitation: worst-case form of disorder inequality

Ranwalk Informally

Hierarchical greedy navigation:

(1) Start at random city p_{1}
(2) Among all airlines choose the one going most closely to q, move there (say, to p_{2})
(3) Among all railway routes from p_{2} choose the one going most closely to q, move there $\left(p_{3}\right)$
(4) Among all bus routes from p_{3} choose the one going most closely to q, move there $\left(p_{4}\right)$
(5) Repeat this $\log n$ times and return the final city

2

Combinatorial Random Walk

Ranwalk: Data structure

Set $D^{\prime}=6 D \log \log n$
For every object p in database S choose at random:

- D^{\prime} pointers to objects in $S=B(p, n)$
- D^{\prime} pointers to objects in $B\left(p, \frac{n}{2}\right)$
- D^{\prime} pointers to objects in $B\left(p, D^{\prime}\right)$

Ranwalk: Search via Greedy Walk

- Start at random point p_{0}
- Check endpoints of 1 st level pointers, move to the best one p_{1}
- Check all D endpoints of bottom-level pointers and return the best one $p_{\log n}$

17/35

3

Combinatorial Nets Algorithm

Navigating DAG

Analysis of Ranwalk

Assume that database points together with query point $S \cup\{q\}$ satisfy disorder inequality with constant D :

$$
\operatorname{rank}_{x}(y) \leq D\left(\operatorname{rank}_{z}(x)+\operatorname{rank}_{z}(y)\right)
$$

Then for any error probability δ Ranwalk will use the following resources:

- Preprocessing space: $\mathcal{O}(D \log n(\log \log n+\log 1 / \delta)$
- Preprocessing time: $\mathcal{O}\left(n^{2} \log n\right)$
- Search time $\mathcal{O}\left(D \log n(\log \log n+\log 1 / \delta)+D^{3}\right)$
- $\log n$ layers
- $C_{i-1} \subset C_{i}$
- Down-degree is bounded $(\operatorname{poly}(D))$
- Search via "greedy dive"

Combinatorial Net

A subset $R \subseteq S$ is called a combinatorial r-net iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R$, s.t. $\operatorname{rank}_{x}(y)<r$.
Separation: $\forall x_{i}, x_{j} \in R, \operatorname{rank}_{x_{i}}\left(x_{j}\right) \geq r \operatorname{OR} \operatorname{rank}_{x_{j}}\left(x_{i}\right) \geq r$

How to construct a combinatorial net? What upper bound on its size can we guarantee?

Basic Data Structure

Combinatorial nets:

For every $0 \leq i \leq \log n$, construct a $\frac{n}{2^{i}}$-net

Pointers, pointers, pointers:

- Direct \& inverted indices: links between centers and members of their balls
- Cousin links: for every center keep pointers to close centers on the same level
- Navigation links: for every center keep pointers to close centers on the next level

Up'n'Down Trick

Assume your have $2 r$-net for the dataset
To compute an r-ball around some object p :
(1) Take a center p^{\prime} of $2 r$ ball that is covering p
(2) Take all centers of $2 r$-balls nearby p^{\prime}
(3) For all of them write down all members of theirs $2 r$-balls
(9) Sort all written objects with respect to p and keep r most similar ones.

Theorem

Combinatorial nets can be constructed in $\mathcal{O}\left(D^{7} n \log ^{2} n\right)$ time

Search by Combinatorial Nets

- $\log n$ layers
- $C_{i-1} \subset C_{i}$
- Down-degree is bounded (poly (D))
- Search via "greedy dive"

Navigating DAG:

- Layer i : combinatorial net with radius $n / 2^{i}$
- Down-links from p : members of next layer $i+1$ having rank to p at most $3 D^{2} \frac{n}{2^{i+1}}$

4

Applications of Combinatorial Framework

Analysis of Combinatorial Nets

Assume $S \cup\{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

- Preprocessing: $\mathcal{O}\left(D^{7} n \log ^{2} n\right)$
- Search: $\mathcal{O}\left(D^{4} \log n\right)$

Near-Duplicates

Assume, comparison oracle can also tell us whether $\sigma(x, y)>T$ for some similarity threshold T

Theorem

All pairs with over- T similarity can be found deterministically in time

$$
\text { poly }(D)\left(n \log ^{2} n+\mid \text { Output } \mid\right)
$$

Visibility Graph

Theorem

For any dataset S with disorder D there exists a visibility graph:

- poly (D) $n \log ^{2} n$ construction time
- $\mathcal{O}\left(D^{4} \log n\right)$ out-degrees
- Naïve greedy routing deterministically reaches exact nearest neighbor of the given target q in at most $\log n$ steps

Definition of Visibility

A center c_{i} in the $\frac{n}{2^{i}}$-net is visible from some object p iff

$$
\operatorname{rank}_{p}\left(c_{i}\right) \leq 3 D^{2} \frac{n}{2^{i}}
$$

Interpretation: the farther you are the larger radius you need to be visible

Future of Combinatorial Framework

- What if disorder inequality has exceptions?
- Insertions, deletions, changing metric
- Experiments \& implementation
- Metric transformations
- Unification challenge: disorder + doubling $=$?

Summary

- Combinatorial framework:
comparison oracle + disorder inequality
- New algorithms:

Nearest neighbor search
Deterministic detection of near-duplicates
Navigability design

Thanks for your attention! Questions?

Links

http://yury.name/esscass/

Yury Lifshits and Shengyu Zhang
Combinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small-World Design
http://yury.name/papers/lifshits2008similarity.pdf
围 Navin Goyal, Yury Lifshits, Hinrich Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search http://yury.name/papers/goyal2008disorder.pdf

Dominique Tschopp, Suhas Diggavi
Approximate nearest neighbor search through comparisons
http://arxiv.org/pdf/0909.2194

