Combinatorial Framework for Similarity Search

Yury Lifshits Yahoo! Research

ESSCASS 2010

Revision: Similarity Function

Contributing factors for paper recommendation:

Similarity is high when:

of chains is high, chains are short, chains are heavy

History

Navin Goyal, YL, Hinrich Schütze, WSDM 2008:

- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- Nearest neighbor algorithm

YL, Shengyu Zhang, SODA 2009:

- Better nearest neighbor search
- Detecting near-duplicates, navigability for small worlds

Dominique Tschopp, Suhas Diggavi, ArXiv 2009:

• LSH-like combinatorial algorithm

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Typical web dataset has separation effect

Revision: Basic Assumptions

For almost all $i, j : 1/2 \le d(p_i, p_i) \le 1$

Classic methods fail:

Branch and bound algorithms visit every object Doubling dimension is at least $\log n/2$

1/35

Combinatorial Framework vs. Ideal Algorithm

- Any dataset
- + Any data model
- + Any dimension
- + Exact nearest neighbor
- + Provable efficiency
- $+^*$ Zero probability of error
- $+^*$ Near-linear space
- $+^*$ Logarithmic search time

5 / 35

Combinatorial Framework

Outline

- Combinatorial Framework
- 2 Combinatorial Random Walk
- Combinatorial Nets Algorithm
- Applications of Combinatorial Framework

Comparison Oracle

- Dataset *p*₁, . . . , *p*_n
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

6/35

Who is closer to A: B or C?

Disorder Inequality

Sort all objects by their similarity to *p*:

9 / 35

Combinatorial Framework: FAQ

- Disorder of a metric space? Disorder of \mathbb{R}^k ?
- In what cases disorder is relatively small?
- Experimental values of *D* for some practical datasets?

Combinatorial Framework

10/35

Disorder vs. Others

- If expansion rate is c, disorder constant is at most c^2
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of "doubling effect"

Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information

Limitation: worst-case form of disorder inequality

13 / 35

Ranwalk Informally

Hierarchical greedy navigation:

- Start at random city p_1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)
- Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
- Sepeat this log *n* times and return the final city

Ranwalk: Data structure

Combinatorial Random Walk

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$
- D' pointers to objects in B(p, D')

14/35

Ranwalk: Search via Greedy Walk

• Start at random point *p*₀

. . .

- Check endpoints of 1st level pointers, move to the best one p_1
- Check all *D* endpoints of bottom-level pointers and return the best one *p*_{log n}

3

Combinatorial Nets Algorithm

Analysis of Ranwalk

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

 $\operatorname{rank}_{x}(y) \leq D(\operatorname{rank}_{z}(x) + \operatorname{rank}_{z}(y)).$

Then for any error probability δ Ranwalk will use the following resources:

- Preprocessing space: $O(D \log n(\log \log n + \log 1/\delta))$
- Preprocessing time: $\mathcal{O}(n^2 \log n)$
- Search time $\mathcal{O}(D \log n(\log \log n + \log 1/\delta) + D^3)$

18 / 35

Navigating DAG

- log *n* layers
- $C_{i-1} \subset C_i$
- Down-degree is bounded (*poly(D*))
- Search via "greedy dive"

Combinatorial Net

A subset $R \subseteq S$ is called a **combinatorial** *r***-net** iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R$, s.t. $\operatorname{rank}_{x}(y) < r$. Separation: $\forall x_i, x_i \in R$, $\operatorname{rank}_{x_i}(x_i) \ge r$ OR $\operatorname{rank}_{x_i}(x_i) \ge r$

How to construct a combinatorial net? What upper bound on its size can we guarantee?

21 / 35

Fast Net Construction

Theorem

Combinatorial nets can be constructed in $O(D^7 n \log^2 n)$ time

Basic Data Structure

Combinatorial nets:

For every $0 \le i \le \log n$, construct a $\frac{n}{2^i}$ -net

Pointers, pointers, pointers:

- Direct & inverted indices: links between centers and members of their balls
- Cousin links: for every center keep pointers to close centers on the same level
- Navigation links: for every center keep pointers to close centers on the next level

22 / 35

Up'n'Down Trick

Assume your have 2*r*-net for the dataset

To compute an *r*-ball around some object *p*:

- **1** Take a center p' of 2r ball that is covering p
- 2 Take all centers of 2r-balls nearby p'
- So For all of them write down all members of theirs 2r-balls
- Sort all written objects with respect to p and keep r most similar ones.

Search by Combinatorial Nets

- log *n* layers
- $C_{i-1} \subset C_i$
- Down-degree is bounded (*poly(D*))
- Search via "greedy dive"

Navigating DAG:

- Layer *i*: combinatorial net with radius $n/2^i$
- Down-links from *p*: members of next layer i + 1having rank to *p* at most $3D^2 \frac{n}{2^{i+1}}$

25 / 35

4

Applications of Combinatorial Framework

Analysis of Combinatorial Nets

Assume $S \cup \{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

- Preprocessing: $\mathcal{O}(D^7 n \log^2 n)$
- Search: $\mathcal{O}(D^4 \log n)$

26 / 35

Near-Duplicates

Assume, comparison oracle can also tell us whether $\sigma(x, y) > T$ for some similarity threshold T

Theorem

All pairs with over-T similarity can be found deterministically in time

 $poly(D)(n \log^2 n + |Output|)$

Visibility Graph

Theorem

For any dataset *S* with disorder *D* there exists a **visibility graph**:

- $poly(D)n \log^2 n$ construction time
- $\mathcal{O}(D^4 \log n)$ out-degrees
- Naïve greedy routing deterministically reaches exact nearest neighbor of the given target q in at most log n steps

29 / 35

Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

$$rank_p(c_i) \leq 3D^2 \frac{n}{2^i}$$

Interpretation: the farther you are the larger radius you need to be visible

Directions for Further Research

Future of Combinatorial Framework

- What if disorder inequality has exceptions?
- Insertions, deletions, changing metric
- Experiments & implementation
- Metric transformations
- Unification challenge: disorder + doubling = ?

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- New algorithms:
 - Nearest neighbor search Deterministic detection of near-duplicates Navigability design

Thanks for your attention! Questions?

33 / 35

Links

http://yury.name/esscass/

- Yury Lifshits and Shengyu Zhang Combinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small-World Design http://yury.name/papers/lifshits2008similarity.pdf
- Navin Goyal, Yury Lifshits, Hinrich Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search http://yury.name/papers/goyal2008disorder.pdf
- Dominique Tschopp, Suhas Diggavi Approximate nearest neighbor search through comparisons http://arxiv.org/pdf/0909.2194