Computer is divided to observable and protected parts
Technologically possible: accessible memory but protected processor
Today: making interaction between processor and memory useless for learning program

Outline

What Kind of Computer Are We Going To Construct?

Basic Solutions

Hierarchial Construction

Computer Model

Two parts: Memory and Processor
Internal memory of Processor = $c \log |\text{Memory}|$
Interaction: $\text{fetch}(\text{adress}), \text{store}(\text{adress}, \text{value})$
Processor has access to random oracle
Computation starts with a program and an input in Memory
One step: fetch one cell - update value and Processor memory - store

Oblivious Execution

We want to hide: order of accesses to cells of Memory
Oblivious execution:
For all programs of size m working in time t
order of fetch/store addresses is the same
Weaker requirement:
For all programs of size m working in time t
order of fetch/store addresses has the same distribution

Naive Simulation

Simulation 1:
We store encrypted pairs (adress, value) in memory cells
For every fetch/store we scan through all memory
Wrong adress \Rightarrow just reencrypt and store
Right adress \Rightarrow do the job \Rightarrow encrypt and store the result

Cost of simulation: tm time, m memory
We need to protect:
- Order of accesses
- Number of accesses

Memory = Main Part \(m + \sqrt{m} \) \mid Shelter \(\sqrt{m} \)

Idea:
- Divide computation in epochs of \(\sqrt{m} \) steps each
- On each original step make one fetch to the Main Part and scan through all the Shelter

Simulation 2:
- Store input in the Main Part
- Add \(\sqrt{m} \) dummy cells to the Main part
- For every epoch of \(\sqrt{m} \) steps
 - Permute all cells in the Main Part (using permutation \(\pi \) from random oracle)
 - For each process(\(i \)) scan through the shelter. If \(i \)-th element is not founded, fetch it from \(\pi(i) \), otherwise fetch next dummy cell
- Update (obliviously) the Main Part using the Shelter values

Cost of simulation: \(t \sqrt{m} \) time, \(m + 2 \sqrt{m} \) memory

Buffer Solution (1): Oblivious Hash Table

Memory of initial program: \((a_1, v_1), \ldots, (a_m, v_m) \)

- Take a hash function \(h : [1..m] \rightarrow [1..m] \)
- Prepare \(m \times \log m \) table
- Put \((a_i, v_i) \) to random free cell in \(h(a_i) \)-th column
- Home problem 4: Prove that the chance of overflow is less than \(1/m \)

Buffer Solution (2): Simulation

Restricted problem: assume that every cell accessed only once

Simulation 3:
- Construct (obliviously) a hash table
- For every step fetch(\(i \)) of initial program
 - Scan through \(h(i) \)-th column
 - Update the target cell

Cost of simulation: \(t \log m \) time, \(m \log m \) memory

Outline

1. What Kind of Computer Are We Going To Construct?
2. Basic Solutions
3. Hierarchial Construction

Hierarchial Simulation

Simulation of processing cell \(i \):
- Scan through 1-buffer
- For every \(j \) scan through \(h(i,j) \)-th column in \(j \)-buffer
- Put the updated value to the first buffer

Data Structure

- \(k \)-Buffer = table \(2^k \times k \)
- Hierarchial Buffer Structure = 1-buffer, \ldots, \log t-buffer
- Initial position: input in last buffer, all others are empty

Periodic Rehashing

Refreshing the data structure:
- Every \(2^{l-1} \) steps unify \(j \)-th and \(j - 1 \)-th buffers
- Delete doubles
- Using new hash function put all data to \(j - \)th level

Invariant: For every moment of time for every \(l \) buffers from 1 to \(l \) all together contain at most \(2^{2l-1} \) elements
Discussion

Comments on final solution:
- Cost: $O(t \cdot (\log t)^3)$ time, $O(m \cdot (\log m)^2)$ memory
- Omitted details: realization of oblivious hashing and random oracle
- Tamper-proofing extension

Summary

Main points:
- Theoretical model for hardware-based code protection: open memory/protected CPU
- Central problem: simulation of any program with any input by the same access pattern
- Current result: $O(t \cdot (\log t)^3)$ time, $O(m \cdot (\log m)^2)$ memory simulation

Home Problem 4

Prove that the chance of overflow in hash table construction is less than $1/m$

Reading List

O. Goldreich, R. Ostrovsky
Software protection and simulation on oblivious RAM, 1996.
http://www.wisdom.weizmann.ac.il/~oded/PS/soft.ps

Thanks for attention. Questions?