
Tiling Periodicity ?

Juhani Karhumäki1, Yury Lifshits2, and Wojciech Rytter3,4

1 Turku University, Finland, karhumak@utu.fi
2 Steklov Institute of Mathematics at St.Petersburg, Russia,

yura@logic.pdmi.ras.ru
3 Department of Mathematics and Informatics, Copernicus University, Torun, Poland

4 Warsaw University, Poland, rytter@mimuw.edu.pl

Abstract. We contribute to combinatorics and algorithmics of words
by introducing new types of periodicities in words. A tiling period of a
word w is partial word u such that w can be decomposed into several
disjoint parallel copies of u, e.g. a � b is a tiling period of aabb. We inves-
tigate properties of tiling periodicities and design an algorithm working
in O(n log(n) log log(n)) time which finds a tiling period of minimal size,
the number of such periods and their compact representation. The com-
binatorics of tiling periods differs significantly from that for classical full
periods, for example unlike the classical case the same word can have
many different primitive tiling periods. We consider also a related new
type of periods called in the paper multi-periods. As a side product of
the paper we solve an open problem posted by T. Harju.

1 Introduction

The number p is a full period (period, in short) of a word w of length n iff p|n and
wi = wi+p whenever both sides are defined. Define by period(w) the shortest
nonzero full period of w.

In this paper we extend the notion of a full period. Namely, we are inter-
ested in tilings of a word where the tiles themselves may contain ”transparent”
letters. A tiler (or partial word) is a word over Σ ∪ {�} alphabet, where � is a
special transparent (or undefined) letter. In other words, a tiler is a sequence of
connected words (blocks) with gaps between the blocks. The size of a tiler is
the number of defined symbols.

Imagine that we have several copies of a tiler printed on transparencies. Then,
this tiler is a period for some word, if we can put these copies into the stack such
that they form a single connected word without overlapping of visible letters.
Thus, a tiler S is called a tiling period of an (ordinary) word T if we can split T
into disjoint parallel copies of S satisfying the following: (a) All defined (visible)
letters of S-copies match the text letters; (b) Every text letter is covered by

? Support by grant N 8206039 of the Academy of Finland for the first author, by grants
INTAS 04-77-7173 and NSh-8464.2006.1 for the second author, and by grant of the
Polish Ministry of Science and Higher Education N 206 004 32/0806 is gratefully
acknowledged.

exactly one defined (visible) letter. Similarly we define a tiling period x of a
tiler x: x consists of several disjoint copies of y. The word (a tiler) is primitive
if it has no proper tiling period. The tiling period of x is minimal iff it has
minimal size.

Example. For example a a � � b b is a tiling period of aaaabbbbaaaabbbb and
a � b � � � � � c � d is a tiling period of aabbaabbccddccdd. Both have size 4, the
first one is not primitive.

Problem. We investigate basic properties of tiling periodicity and comparing
it to the classical notion. We address the following questions: (1) How to enlist
all possible tiling periods? (2) Does every word have a unique primitive tiling
period? (3) How to find all tiling periods of minimal size? (4) How many periods
can a word of length n have? (5) What is the relation between the primitive clas-
sical and the primitive tiling periods? We have several reasons to be interested
in tiling periodicity. Firstly of all, it is a natural generalization of classical no-
tion, i.e. any full period is also a tiling period. Secondly, in the case when a tiling
period is relatively small, we can describe a long word by just its tiling period
and the length. Hence, we get a new class of words with low Kolmogorov com-
plexity. Tiling periodicity might be useful for the new text compression methods
(especially for generalizing run-length encoding). Note here, that the ratio be-
tween the “size” of tiling period and the length of classical full period may be
arbitrarily small. Next, the notion of tiling periodicity provides a geometrical in-
tuition about structure of the text. We have a conjecture that tiling periodicity
is not expressible by word equations. Yet another motivation for studying tiling
periodicity is a hope for applications in pattern discovery in some real data.

There are natural sources of tiling periodicity when considering multidimen-
sional n1 × · · · × nd rectangles. Let every integer point in it be colored. We
sort all points in lexicographical order of their coordinates and write down all
their colors in a single sequence. Assume that the initial rectangle was tiled by a
smaller one m1×· · ·×md where m1|n1, . . . ,md|nd and every copy of the smaller
rectangle was colored in the same way. Then the color sequence for the bigger
rectangle has a tiling period. We comment this example later after introducing
some useful terminology. Automatically generated texts and XML-files might be
another possible sources of tiling periodicity.

Our results. Tilling periodicity looks very simple and natural, but up to our
knowledge it was never formulated before in its whole generality. We introduce
a partial order on tiling periods and discover that contrary to the classical case
there might be several incomparable primitive tiling periods. This helps to dis-
prove a common subtiler conjecture by Tero Harju. However we prove that every
primitive tiling period of a word T is also a tiling period of the primitive full
period of T . This property tells us that tiling periodicity lives “inside” classical
one. Finally, we present an algorithm which in O(n log(n) log log(n)) time finds
a tiling period of minimal size, the number of such periods and their compact
representation.

We present a complete hierarchy of all possible tiling periods. In particular
we get a recursive formula for computing function L(n) that gives the maximal
number of tiling periods for a unary word of length n. The value L(n) might be
even more than the text length. Actually, Bodini and Rivals obtain this recursive
formula a few months earlier: their paper [3] was submitted in January 2006,
while our results were reported only in May 2006 [10]. Here we keep our proof
since (comparing to [3]) it construct explicit one-to-one correspondence between
tilers and length factorizations, and introduces levels in the set of all tilers.

Related results Prior to other work only tilings of a unary word were consid-
ered [3]. In the paper [13] authors present an algorithm for finding all tilers that
have at least q (quorum parameter) matches with the text. Another related no-
tion is cover [1]: a word C is a cover for a word T if any letter of T belongs
to some occurrence of C in T . One of the most important results related to
periodicity is a theorem by Fine and Wilf [5]. They studied the necessary and
sufficient condition under which from p-periodicity and q-periodicity we can de-
rive gcd(p, q)-periodicity (recall that gcd is the greatest common divisor). We
tried to prove the similar property for tiling periods. Surprisingly, it does not
hold. Even two tiling periods of the same text may have no common subperiod.
Our attempt to generalize the notion of periodicity is not the first one. Recently,
Simpson and Tijdeman generalized Fine and Wilf theorem for multidimensional
periodicity [17]. Berstel and Boasson [9] followed by Shur and Konovalova (Gam-
zova) [16, 15] and Blanchet-Sadri [2] extensively studies partial words and their
periodicity properties. However, overlapping of periods (where every letter of the
text is covered exactly once) were not considered and therefore in their terms
only partial words may have partial periods (i.e. periods with gaps). In the paper
[8] borders of a partial word are studied. Katona and Szàsz introduced in [11] a
sort of tiling periodicity in two dimensions. They consider tilers consisting only
of two letters. The notion of periodicity was generalized for infinite words under
the name almost periodic sequences, see e.g. [14].

2 Properties of Tiling Periodicity

We say that one tiler S is smaller than another tiler Q, and write S ≺ Q, if S is
a proper tiling period of Q. In the case of full periodicity any text has a single
primitive full period. We are interested in the following question: is it true that
for every ordinary word there exists a unique primitive tiling period (i.e. it is
smaller than any other tiling period)? It can be reformulated in an alternative
way: do any two tiling periods have a common tiling “subperiod”? Surprisingly,
the answer is negative. Figure 1 presents the shortest known example T (24 let-
ters) with two incomparable periods (the proof of their primitiveness is omitted
in this version).

We can get more incomparable tiling periods. Let TA1B1
and TA2B2

be ob-
tained from T by just using different letters. We construct the text T2 by replac-
ing every A in T by TA1B1

and every B in T by TA2B2
. Now we can describe

four incomparable tiling periods for T2. The text T2 has length 242. Group all
letters to 24 blocks of 24 letters. Choose 12 of blocks using one of two partial
words above. Then inside each block also keep only 12 letters using either first
or second tiling period (the same in every block). We can repeat the construc-
tion several times. The text Tk has size 24k and has 2k incomparable periods.

Asymptotically it has n
log 2

log 24 > 5
√

n incomparable primitive tiling periods.

a a a a a a a a b a a b b a a b a a a a a a a a a a a a a a a a b a a b b a a b a a a a a a a a

Fig. 1. Two primitive tiling periods of an example word, both of size 12.

In 2003 in his lecture course [6] Tero Harju asked the following question.
Assume that some colored cellular figure has tiling by one pattern and by another
one. Is it always true that there exists the third one such that both first two can
be tiled by that third one? This question is motivated by studying defect effect
in combinatorics of words [7]. Our example shows that the answer is negative
even for one-dimensional (but disconnected!) figures.

We consider now the situation when the number of tilers in a word is maximal,
this happens for a unary word of length n (i.e only one character is used). Then
we reformulate tiling periodicity in the algebraic terms (like si = si+p for full
periodicity). This reformulation helps us to prove that any primitive tiling period
is smaller than the primitive full period and to compute all tiling periods of
minimal size.

Lemma 1. Take any tiling period P . Then all continuous blocks in P are of the
same size s and the length of any gap in P is a multiple of s.

Proof. Indeed, in the text tiling the second copy of P is shifted by the size of the
first block s1. Hence, for avoiding overlapping all other blocks are smaller or equal
than s1. Assume now, that the block b is the first one which is strictly smaller
than s1. Then the gap between b in the first copy of P and b in the second copy
of P is smaller than s1. Hence, that gap cannot be filled by anything. Every gap
in P is filled by several blocks of some copies of P . Hence it must be a multiple
of s.

Theorem 1. There is a one-to-one correspondence between tiling periods of a
unary word and decompositions n = n1· . . . ·nk, where n2, . . . , nk ≥ 2.

Proof. At first, we describe a set of tiling periods (hierarchial construction) for
the word of length n over the unary alphabet. Then we prove that this set is
complete, i.e. contains all possible tiling periods.

We divide the set of all periods in levels. Every period in our system is
associated with a special code. The whole text itself is the only period from

0-level and has the code n. For every decomposition n = n1 · n2 with n2 ≥ 2
the block of size n1 is a period from 1-level with a code n1 · n2. The 0-level and
1-level actually represent all classical (i.e. connected) full periods.

We now explain how to construct a period Q of k+1-level from a period P of
k − 1-level with the code n1· . . . ·nk. Take any decomposition n1 = m1 ·m2 ·m3

with m2,m3 ≥ 2. Through all our construction the first number of a code is
equal to block size of a tiling period (all continuous blocks have equal sizes
in our constructions). To construct the new tiler Q we take every block of P ,
divide it into m3 groups of size m1 · m2, and in every such group keep only
first m1 letters. We can notice that P can be tiled by m2 copies of Q (with
shifts 0,m1, . . . ,m1 · (m2 − 1)). Hence, Q is also a tiling period for the text with
the code m1 · m2 · m3 · n2· . . . ·nk. Note, that our construction maintains the
inequality n2, . . . , nk ≥ 2 for all codes.

We now prove that any tiling period is included in our construction. Consider
a tiler P . Let s be the block size and g · s be the length of the first gap. The
plain power of P is defined as the union of P -copies shifted by 0, s, 2s, . . . , g · s.

Claim: The plain power of any tiling period P is also a tiling period.

Proof: take a text splitting in P -copies. Let s be the block size and g · s be
the length of the first gap. We divide all copies of P into groups of g + 1 copies
in the following way. Consider all P -copies from the left to the right. The gap
between first two blocks of the first copy can be filled only by first blocks of
other P -copies. These copies together with the first one form the first group.
Now assume that we already formed several such groups. Consider the first copy
of P unused so far. Look at its first gap. All P -copies from the previous groups
has long (at least s · (g + 1)) continuous blocks. Hence, this gap is also filled by
new, still unused P -copies. Since we process all copies from the left one to the
right one, all of them contribute to this gap filling by their first block. Therefore
these copies form the next group we need. Every group itself is exactly a plain
power of P . Hence, the initial text has also splitting in the plain power copies.
The claim is proved.

Assume now that there exists some P outside of our construction. Then there
also exists some tiling period P ′ such that (1) it is outside of our hierarchy and
(2) its plain power Q is included in our hierarchy. Let us derive a contradiction
from that. Indeed, let n1·. . . ·nk be the code of Q, let s be the block size of P ′

and s · g be the length of its first gap. Then n1 is the block size of Q and it is a
multiple of s · (g + 1). Let m1 = s,m2 = g + 1,m3 = n1/(s · (g + 1)). Now we
see that P ′ is in fact included in our hierarchy as a tiling period with the code
m1 · m2 · m3 · n2· . . . ·nk. Therefore, our hierarchy is complete.

Corollary 1. Let L(n) be the number of tiling periods for the word of length n
over a unary alphabet. The theorem above states that L(n) is equal to the num-
ber of factorizations n = n1·. . . nk, where n2, . . . , nk ≥ 2. By grouping all decom-
positions by the rightmost factor we obtain the recurrence: L(1) = 1; L(n) =
1 +

∑
d|n,d6=n L(d).

Remark. Two related sequences are included in the On-line Encyclopedia of
Integer Sequences [18] maintained by N.J.A. Sloane. The sequence A067824 is
defined by the formula in Corollary 1. The sequence A107736 is the number
of polynomials p with coefficients in {0, 1} that divide xn − 1 and such that
(xn − 1)/((x− 1)p(x)) has all coefficients in {0, 1}. But this is exactly the num-
ber of tiling periods for the unary text of the length n. Indeed, multiplying p
by some polynomial with coefficients in {0, 1} we are trying to split n “ones” in
several parallel copies of p without overlapping. Till August 2006 Encyclopedia
indicated that “A067824 and A107736 agree at least on first 300 terms, but no
proof of equivalence is known”. After recent work [3], Theorem 1 and Corollary
1 give a new independent proof of their equality. Indeed, the number of poly-
nomials is equal to the number of tiling periods, the number of tiling periods is
equal to the number of factorizations (Theorem 1), the number of factorizations
satisfies the recursive formula (Corollary 1). The function L(n) and the number
of factorizations also appear in Knuth’s book [12]. However, no closed formula
for L(n) is known so far.

Definition. Assume we count positions starting from 0. For a divisor p of n, by p-
block we mean a subword of the form x[i·p..(i+1)·p−1], where 0 ≤ i ≤ (n−1)/p.
We say that a word T = T0 . . . Tn−1 has a multi-period (a, b) (or a period a
ranged by b) if b|n, and all b-blocks have a full period a. Observe that the word
corresponding to this period can be different in each block. Classical full period
p coincides with the multi-period (p, n).

Lemma 2. A word T has a tiling period with the code n1·. . . ·n2k or n1·. . . ·n2k+1

iff it has multi-periods respectively

(n1, n1n2), . . . , (

2k−1∏

i=1

ni,

2k∏

i=1

ni) or (n1, n1n2), . . . , (

2k−1∏

i=1

ni,

2k∏

i=1

ni).

Proof. We first describe Step 1: from tiling period P to multiperiodicity. We
use induction over tiler’s level. Consider the corresponding text tiling. Recall
that all copies of P can be divided into groups of size n2 with internal shifts
0, n1, . . . , n1(n2 − 1). If we divide the whole text into the blocks of size n1n2,
every block is covered by P -copies from the same groups, and therefore it is
n1-periodic (inside the block). We proved (n1, n1n2)-multiperiodicity. All others
follow from the induction hypothesis for the plain power of P .
Step 2: from multi-periods to a tiling periodicity.

Consider the top multi-period (
∏2k−1

i=1 ni,
∏2k

i=1 ni). Let us consider the text

tiling by tiler Q with the code (
∏2k−1

i=1 ni) · n2k for the first statement of lemma

and Q with the code (
∏2k−1

i=1 ni) · n2k · n2k+1 for the second case. Directly from
this top multiperiodicity every copy of Q has the same letters on the same places.
Hence, Q is a tiling period for the text. Continuing the reasoning, with the help
of the second multiperiodicity we find another tiling period R inside Q. Finally,
the last multiperiodicity gives us the tiling period with the code we promised in
the lemma’s statement.

Lemma 3. If the text T has a full period p and a multi-period (a, b), then either
b|p or the text has also full period gcd(a, p).

Proof. Take any letter Ti. We are going to make several moves of size ±p and +a
for reaching position i + gcd(a, p). We want to be on the same character every
time and hence we can not make a move of size +a from the last a-blocks in
every b-block. As we know from extended Euclid algorithm, there exist integers
k and l such that gcd(a, p) = ka − lp. We will use the following greedy strategy.
If we are able to make a move of size +a we do this. Otherwise we try to make
several moves of size ±p. After making exactly k moves of size +a we just make
all the remaining moves of size ±p and we are done. We cannot follow greedy
strategy only if for some position j < p from all points j, j +p, . . . j +(n

p
−1)p we

cannot jump +a. This means that all that points belong to the last a-groups in
b-blocks. Suppose now that p is not divided by b. Then u = gcd(p, b) ≤ b

2 . Since
p|n and b|n, among the numbers j mod b, . . . , j + (n

p
− 1)p mod b, there exists

all residues h modulo b such that h ≡ j(mod u). Hence, one of these values is
smaller than u which does not exceed b/2. But this means that the corresponding
point does not belong to the last a-group in the b-block.

Theorem 2. Any primitive tiling period Q of word T is also a tiling period for
the primitive full period of T .

Proof. We use induction over the text length. In the case of the one-letter-text
theorem is true. Let now p be the length of the full period and (a, b) be the top
multiperiodicity from the code of Q (here we use Lemma 1). From p = n theorem
follows immediately. Assume now that p < n. By hierarchial construction Q
consists of some letters from the first a-block in every b-blocks in the text. Let
us apply Lemma 2. If b|p, then we can produce a new tiling period Q′ restricting
Q to the first p symbols in the text. By p-periodicity Q can be split in several
parallel copies of Q′ with shifts 0, p, 2p, . . . , (n

p
− 1)p. We get the contradiction

against the primitivity of Q. Therefore the text has full period gcd(a, p). But
p is the minimal full period. Hence, p|a. Since the text is p-periodic, it is also
a-periodic and b-periodic. That means that we can again restrict Q only for
the first a-block. Either we get a new smaller tiling period Q′ (and that gives
us contradiction) or b = n and all letters of Q belong to the first a-block. We
now see that both full period p and the tiling period Q are periods for the first
a-block. Since a ≤ b/2 ≤ n/2, we can apply induction hypothesis.

Corollary 2. Take any tiling period Q and any full period p. Then they have a
common “tiling subperiod”.

Proof. Consider a primitive tiling period Q′ that is smaller than Q. Consider
the primitive full period p′. From folklore we know that p′|p. By Theorem 2 Q′

is a tiling period for the first p′-block of the text. Hence, Q′ is the required tiling
subperiod for Q and p.

Remark. Using the technique from Lemma 1, Lemma 2 and Theorem 2 it is
possible to prove that the primitive tiling period is unique for n = 2k. We just

suggest the proof scheme here. Take two primitive incomparable tiling periods.
Consider their top multiperiodicities. Apply the reasoning of Lemma 2. Either
one of the periods is not primitive or these multiperiodicities are the same. Going
down we prove either their equivalence or their non-primitivity.

3 Algorithm Compute-Minimal-Tilers

We define the size of tiling period as the number of defined letters in it. In the
algorithm we use the fact that for every tiling period there is a corresponding
chain of embedded multiperiodicities (a1, b1), . . . , (ak, bk). By “embedded” we
mean that bi|ai+1 holds for every i. Notice that the size of a tiling period is

equal to n
∏k

i=1
ai

bi

ALGORITHM Compute-Minimal-Tilers (w)

1. Construct the acyclic tiling graph G of multi-periods.
(a) V = {(a, b) : 1 ≤ a < b ≤ n, & a|b & b|n & MultiPeriod(a, b))
(b) E = {(a, b) → (c, d) : b|c}.
(c) Assign the weight b/a to every node (a, b) ∈ V .

2. Find in G a path π having maximal product val(π) of its node-weights;
3. Output tiler(w, π) (of size n

val(π)).

(16,32) (4,8) (1,2)

Fig. 2. The graph G for the word w = aabbaabbccddccddaabbaabbccddccdd. The path
with maximal product of weights is π : (16, 32) → (4, 8) → (1, 2). We have val(π) = 8
and tiler(w, π) = a�b�����c�d. The size of tiler(w, π) equals 32

8
, since n = |w| = 32.

We describe how to construct the tiler tiler(w, π) corresponding to a path π of
multi-periods:

π = (p1, q1) → (p2, q2) → (p3, q3) → . . . (pk, qk).
For each pi-block of w we replace all symbols which are not in the first qi block
in this block by �. Then from the resulting word we remove all ending �’s.

Remark. The following O(n) size max-paths graph representation G ′ ⊆ G of
all tiling periods of minimal size can be constructed with additional linear work

(since the graph is extremely small). For each vertex v of G compute all outgoing
edges which are on a maximal path starting from v. The graph of all edges on
maximal-product paths represents all tiling periods of minimal size. In particular
we can compute easily the number of such periods.

We describe now an efficient implementation. Let w be a word of length n and
let Divisors(n) denotes the set of divisors of n. The subwords are given by their
starting-ending positions in w. Recall that by p-block we always mean a subword
of length p with a starting position being multiple of p. Denote by period(w) the
size of the smallest full period of a word w. The basic operation in the algorithm
Compute-Minimal-Tilers is the boolean function MultiPeriod(q, p), called main
query, which can be expressed in terminology of the blocks as follows:

MultiPeriod(q, p):

for given p, q ∈ Divisors(n) check if each p-block has a full period q.

Lemma 4. Assume we can preprocess the word in time O(F (n)) to compute
each query MultiPeriod in logarithmic time. Then the algorithm works in time
O(n + F (n)),

Proof. By d(n) we denote the number of divisors of n. It is known that d(n) =
O(nε), for any constant ε > 0. Hence the number of nodes and edges is O(n).
The construction of the graph can be done in linear time after preprocessing.
Computation of a maximal path in time O(n) is very easy, since it is an acyclic
graph with linear number of edges.

Theorem 3. [Fast-Preprocessing]
We can preprocess the word in O(n log n log log n) time in such a way that each
MultiPeriod query can be answered in constant time.

The algorithm Compute-Minimal-Tilers is doing a sublinear number of Mul-
tiPeriod queries, hence the theorem implies immediately the following speed-up
result.

Theorem 4. The minimal-size tiler of a word can be found in O(n log n log log n)
time.

We now show the proof of Theorem 3. Firstly we introduce and concentrate
on small queries. A small query operation is to compute for a given subword
u of w (given by interval in w) the value period(u).

We say that a natural number is a 2-power number if it is a power of two.
We use the idea of basic factors: the subwords with 2-power lengths. Denote by
subwordk(i) the subword of size 2k starting at position i in a given word w.
We can add suitable number of endmarkers to guarantee that for each original
position we have subword of the corresponding length.

Define the table NEXT such that for each 0 ≤ k ≤ log n, 0 ≤ i < n the value
of NEXT [k, i] is the first position j > i such that subwordk(i) = subwordk(j).
If there is no such j then NEXT [k, i] = −1.

Our basic data structure is the dictionary of basic factors, we refer to [4] for
detailed definition. Denote this data structure by DBF (w). For each position i
in w and 0 ≤ k ≤ log n we have a unique label NAME[k, i] ∈ [1..n] such that
subwordk(i) = subwordk(j) ⇔ NAME[k, i] = NAME[k, j].

Lemma 5. The tables NAME and NEXT can be computed in O(n log n) time.

Proof. The table NAME is the basic part of DBF (w) and can be computed
within required complexity using Karp-Miller-Rosenberg algorithm, see [4].

We show how to compute the table NEXT . Let us fix k ≤ log n. We sort lexico-
graphically the pairs (NAME[k, i], i). Then the block of elements in the sorted
sequence with the same first component r gives the increasing sequence of posi-
tions i with the same value NAME[k, i] = r. Let SORTED1[j], SORTED2[j]
be the first and second component of the j-th pair in the sorted sequence.

We execute:

for i := 0 to n − 1 do NAME[k,i]:=-1;
for j := 1 to n − 1 do

if SORTED1[j − 1] = SORTED[j] then
NEXT [k, SORTED2[j − 1] := SORTED2[j];

The radix sorting of pairs of integers can be done in linear time for each k.
We have logarithmic number of k’s, hence the whole computation of NEXT
takes O(n log n) time. This completes the proof.

Lemma 6. [Small Queries]
Assume the tables NAME and NEXT are already computed. Then for any sub-
word u of w (given by interval in w) we can compute period(u) in O(log n)
time.

Proof. We show now how we compute period(u) for u = w[p..q]. We can check
if u has a full period of length u/2 or u/3 in constant time, since we can check
equality of constant number of subwords in constant time. The DBF data struc-
ture allows to check in constant time equality of subwords which lengths are not
necessarily 2-powers (decomposing them into ones which are, possibly overlap-
ping each other).

Now let us go to smaller candidate periods, assume period(u) ≤ |u|/4. Let us take
the prefix v of u which size is a largest power 2k such that |u|/4 ≤ 2k ≤ |u|/2.

Claim. Let u = w[p, q], if period(w[p..q]) ≤ |v|/4 then period(v) is equal to
NEXT [k, p] − p.

The claim follows from the fact that period(u) in this case is a size of a prim-
itive word v such that u is a full power of v. This primitive word can start an
occurrence only at positions which are multiples of v, due to primitivity. Hence
the first such internal position after p should be equal to |v| = period(u). We
can verify this “candidate period” in O(log n) time using NAME table. This
completes the proof of the lemma.

We define now the following data structure. For each p ∈ Divisors(n) define
LCM [p] as the least common multiple of the smallest full periods of all p-blocks
of w.

Lemma 7. We can precompute the table LCM in O(n log n log log n) time.

Proof. Assume we constructed tables NEXT and NAME. We can do it within
required complexity due to Lemma 5. Then for each p ∈ Divisors(n) we can
compute the set of periods of p-blocks in time O(p log n) due to Lemma 6. Then
we compute the lowest common multiple of all these periods in time O(p log n)
for each p. Now the thesis follows from the well known number-theory fact that

∑

p∈Divisors(n)

p = O(n log log n)

This completes the proof of the lemma.

We can finish now the proof of Theorem 3. We know that MultiPeriod(p, q) =
true iff LCM [p] is a divisor of q. This property can be checked in constant time
using the precomputed values of LCM [p]. Consequently, this completes the proof
of Theorem 3.

4 Directions for Further Work

There are a lot of natural, important and perhaps not so difficult questions we
can suggest for further work on tiling periodicity. They are summarized in the
list below.

1. Introduce and study not full tiling periodicity, approximate tiling period-
icity, tilings by two (or more) partial words. This kind of tilings might be
even more useful for compression purposes.

2. Calculate how often do words have proper tiling periods for various models
of random words. Compare the answer with the classical case. Characterize
the equivalent of primitive words.

3. Is it true that all primitive tiling periods are minimal-size tiling periods?

References

1. A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing
for strings. Inf. Process. Lett., 39(1):17–20, 1991.

2. F. Blanchet-Sadri. Periodicity on partial words. Computers and Mathematics with
Applications, 47(1):71–82, 2004.

3. O. Bodini and E. Rivals. Tiling an interval of the discrete line. In CPM’06, LNCS
4009, pages 117–128. Springer-Verlag, 2006.

4. M. Crochemore and W. Rytter. Jewels of stringology: text algorithms. World. Sc.,
2003.

5. N. Fine and H. Wilf. Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc., 16:109–114, 1965.

6. T. Harju. Defect theorem, lecture notes of ”Combinatorics of words” Tarragona
course, 2002/2003.

7. T. Harju and J. Karhumäki. Many aspects of defect theorems. Theor. Comput.
Sci., 324(1):35–54, 2004.

8. C. S. Iliopoulos, M. Mohamed, L. Mouchard, K. Perdikuri, W. F. Smyth, and A. K.
Tsakalidis. String regularities with don’t cares. Nord. J. Comput., 10(1):40–51,
2003.

9. L. Boasson J. Berstel. Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci., 218(1):135–141, 1999.

10. J. Karhumäki and Y. Lifshits. Tiling periodicity, May 2006. Dagstuhl seminar
“Combinatorial and Algorithmic Foundations of Pattern and Association Discov-
ery”, http://kathrin.dagstuhl.de/files/Materials/06/06201/06201.LifshitsYury1.Slides.pdf.

11. G. O. H. Katona and D. O. H. Szász. Matching problems. J. of Combinatorial
Theory Ser B, 10(1):60–92, 1971.

12. D. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley, 2005.

13. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. Bases of motifs for gen-
erating repeated patterns with wild cards. IEEE/ACM Trans. Comput. Biology
Bioinform., 2(1):40–50, 2005.

14. Y. Pritykin and M. Raskin. Almost periodicity and finite automata. Technical
Report available at http://lpcs.math.msu.su/~pritykin/files/apfinaut.zip,
2007.

15. A. M. Shur and Y. V. Gamzova. Partial words and the periods’ interaction prop-
erty. Izvestiya RAN, 68(2):199–222, 2004.

16. A. M. Shur and Y. V. Konovalova. On the periods of partial words. In MFCS’01,
LNCS 2136, pages 657–665. Springer-Verlag, 2001.

17. R. J. Simpson and R. Tijdeman. Multi-dimensional versions of a theorem of Fine
and Wilf and a formula of Sylvester. Proc. Amer. Math. Soc., 131:1661–1667, 2003.

18. N. J. A. Sloane. The on-line encyclopedia of integer sequences.
http://www.research.att.com/~njas/sequences.

