
Querying and Embedding Compressed Texts

Yury Lifshits1, Markus Lohrey2

1 Steklov Institut of Mathematics, St.Petersburg, Russia
2 Universität Stuttgart, FMI, Germany

yura@logic.pdmi.ras.ru, lohrey@informatik.uni-stuttgart.de

Abstract. In this work the computational complexity of two simple string prob-
lems on compressed input strings is considered: the querying problem (What is
the symbol at a given position in a given input string?) and the embedding prob-
lem (Can the first input string embedded into the second input string?). Straight-
line programs are used for text compression. It is shown that the querying prob-
lem becomes P-complete for compressed strings, while the embedding problem
becomes hard for the complexity class Θ

p

2
.

1 Introduction

During the last decade, the massive increase in the volume of data has motivated the
need for algorithms on compressed data, like for instance compressed strings, trees, or
pictures. The general goal is to develop efficient algorithms that directly work on com-
pressed data without prior decompression, or to prove under general assumptions from
complexity theory that such efficient algorithms do not exist. In this paper we concen-
trate on algorithms on compressed strings. We investigate two computational problems,
which can be trivially solved in linear time for uncompressed input strings: the query-
ing problem and the embedding problem. In the embedding problem we have given two
input strings p (the pattern) and t (the text), and we ask whether p can be embedded into
t, i.e., p can be obtained by deleting some letters of the text t at arbitrary positions, see
Section 4 for a formal definition. In the querying problem the input consists of a string
s, a position i ∈ N, and a letter a, and we ask, whether the i-th symbol of s is a.

For string compression, we choose straight-line programs (SLPs), or equivalently
context-free grammars that generate exactly one word. Straight-line programs turned
out to be a very flexible and mathematically clean compressed representation of strings.
Several other dictionary-based compressed representations, like for instance Lempel-
Ziv (LZ) factorizations [24], can be converted in polynomial time into straight-line pro-
grams and vice versa [18]. This implies that complexity results, which refer to classes
above deterministic polynomial time, can be transfered from SLP-encoded input strings
to LZ-encoded input strings. It turns out that the computational complexity of the query-
ing problem and the embedding problem becomes very different, when input strings
are encoded via SLPs: While for SLP-compressed strings the querying problem (also
called compressed querying problem) becomes complete for deterministic polynomial
time (Thm. 4), the embedding problem (also called fully compressed embedding prob-
lem; the term fully is used because both, the pattern and the text are assumed to be
compressed) becomes hard for the class Θ

p
2 (Thm. 1). The latter class consists of all

problems that can be accepted by a deterministic polynomial time machine with access
to an oracle from NP and such that furthermore all questions to the oracle are asked
in parallel [23]. Θ

p
2 is located between the first and the second level of the polynomial

time hierarchy, it contains NP and coNP and is contained in Σ
p
2 ∩ Π

p
2 . We are cur-

rently not apply to prove a matching upper bound. The best upper bound for the fully
compressed embedding problem that we can prove is PSPACE (Prop. 1). A corollary
of the Θ

p
2-hardness of the fully compressed embedding problem is Θ

p
2-hardness of the

longest common subsequence problem and the shortest common supersequence prob-
lem on SLP-compressed strings, even when both problems are restricted to two input
strings. These problems have many applications e.g. in computational biology [10].

The paper is organized as follows. After introducing the necessary concepts in
Sec. 2, we prove in Sec. 3, based on a reduction from the super increasing subset sum
problem [11], P-completeness of the compressed querying problem for a binary input
alphabet. For a variable input alphabet, we sharpen this result by showing that even for
RLZ-encoded strings the compressed querying problem is P-complete, which solves
an open problem from [7]. RLZ-encodings (restricted Lempel-Ziv encodings) can be
seen as a restricted form of straight-line programs. In Sec. 4 we show that the fully
compressed embedding problem is Θ

p
2-hard. The proof is divided into two main parts.

First we prove NP-hardness by a reduction from the subset sum problem (Sec. 4.1).
Second, we show how to simulate boolean operations via fully compressed embedding
(Sec. 4.2). By taking together these two parts we can deduce hardness for Θ

p
2 (Sec. 4.3).

1.1 Related work

Research on pattern matching problems for dictionary-based compressed strings started
with the seminal paper [1]. In [17], Plandowski has shown that it can be tested in poly-
nomial time whether two SLPs represent the same text. Plandowski’s technique was
extended in [8, 14] in order to show that the fully compressed pattern matching prob-
lem can be solved in polynomial time as well. The fully compressed pattern matching
problem is the compressed version of the classical pattern matching problem: for two
given SLPs P and T we ask, whether the text represented by T can be written as upv,
where p is the text represented by the SLP P . Note the similarity between the fully
compressed pattern matching problem and the fully compressed embedding problem
studied in this paper: In the latter problem we also search for a compressed pattern in
a compressed text, but we allow that the pattern occurs scattered, i.e., with gaps, in the
text. This more liberal notion of pattern-occurrence makes the application of periodicity
properties of words (in particular the lemma of Fine and Wilf), which are crucial in [8,
14, 17], impossible, and is in some sense the reason for the higher complexity of the
fully compressed embedding problem. A similar complexity jump was observed when
moving from ordinary (1-dimensional) to 2-dimensional text, i.e., rectangular pictures:
In this framework, fully compressed pattern matching becomes ΣP

2 -complete [3].
The computational problems mentioned so far can be all formulated as particular

compressed membership problems, where we ask whether a given compressed text be-
longs to some formal language, which may either be fixed or given in the input, e.g.,
in form of an automaton or a grammar. Precise complexity results for these problems
were obtained in [2, 13] for regular languages and [12] for context-free languages.

2

Whereas it is NP-complete to compute (and even hard to approximate up to a con-
stant factor) a minimal SLP that generates a given input string [4], several approaches
for generating a small SLP that produces a given input string were proposed and ana-
lyzed in the literature, see e.g. [4, 21].

We refer to [7, 15, 18–20, 22] for a more detailed discussion of algorithmic problems
on compressed strings.

2 Preliminaries

We assume that the reader has some basic background in complexity theory [16]. Let Σ

be a finite alphabet. The empty word over Σ is denoted by ε. For a word s = a1 · · · an ∈
Σ∗ (ai ∈ Σ) let |s| = n, |s|a = |{i | ai = a}| (for a ∈ Σ), s[i] = ai (for 1 ≤ i ≤ n),
and s[i, j] = aiai+1 · · · aj (for 1 ≤ i ≤ j ≤ n). If i > j we set s[i, j] = ε.

Following [18], a straight-line program (SLP) over the terminal alphabet Σ is
a context-free grammar G with ordered non-terminal symbols X1, . . . , Xm (Xm is
the starting symbol) such that there is exactly one production for each symbol: either
Xi → a, where a ∈ Σ is a terminal, or Xi → XjXk for some j, k < i. The lan-
guage generated by the SLP G contains exactly one word that is denoted by eval(G).
More generally, every nonterminal Xi produces exactly one word that is denoted by
evalG(Xi). We omit the index G if the underlying SLP is clear from the context. The
size of G is |G| = m.

We may allow in SLPs a more liberate form of productions, where the right-hand
side for a nonterminal Xi is an arbitrary word over the alphabet Σ ∪ {X1, . . . , Xi−1}.
We may even allow exponential expressions of the form Xk

j for j < i and a binary
coded integer k ∈ N. Such a production can be replaced by O(log(k)) many ordinary
productions.

3 Querying the i-th symbol

In this section, we study the following computational problem Compressed Querying:
INPUT: SLP G (over the terminal alphabet Σ), position i ∈ N, and a ∈ Σ

QUESTION: eval(G)[i] = a?
In this section, we prove that Compressed Querying is P-complete. This means that
unless P = NC, where NC is the class of all problems that can be solved in polylogarith-
mic time using polynomially many processors, there does not exist an efficient parallel
algorithm for Compressed Querying, see [9] for background on P-completeness. All
reductions in this section are NC-reductions, i.e., they can be computed in polylogarith-
mic time with only polynomially many processors.

Theorem 1. Compressed Querying is P-complete. Hardness for P even holds for a
binary terminal alphabet.

Proof. Membership in P is easy to see: first compute for every non-terminal X of the
input SLP the length `X of the generated string eval(X). Now, if we have a production
X → Y Z and we want to determine eval(X)[i] then we first check whether i ≤ `Y .

3

In this case we have to find eval(Y)[i]. On the other hand, if i > `Y , then we have to
determine eval(Z)[i − `X]. This simple idea leads to a polynomial time algorithm.

We prove P-hardness by an NC-reduction from the P-complete problem Super In-
creasing Subset Sum [11]:

INPUT: Integers w1, . . . , wn, t in binary form such that wi >
∑i−1

j=1 wj for all
1 ≤ i ≤ n (in particular w1 > 0).

QUESTION: Do there exist x1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi · wi = t?
Thus, let w1, . . . , wn, t be integers such that wi >

∑i−1
j=1 wj . Let G1, . . . , Gn ∈ {0, 1}∗

be defined as follows, where sj = w1 + · · · + wj for 1 ≤ j ≤ n:

G1 = 10w1−11, Gj = Gj−10
wj−sj−1−1Gj−1 for 2 ≤ j ≤ n

It is straight-forward to construct from the instance (w1, . . . , wn, t) in NC an SLP that
generates the string Gn. Note that wj > sj−1 and hence wj − sj−1 − 1 ≥ 0. Moreover,
we claim that |Gj | = sj+1. This is certainly true for j = 1 since s1 = w1. For j ≥ 2 we
obtain inductively |Gj | = 2|Gj−1|+wj−sj−1−1 = 2sj−1+2+wj−sj−1−1 = sj+1.

We claim that Gn[t+1] = 1 if and only if there exist x1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi · wi = t, which proves the theorem. For this, we prove by induction on j that
for every p ≥ 0: Gj [p + 1] = 1 if and only if ∃x1, . . . , xj ∈ {0, 1} :

∑j

i=1 xi ·wi = p.
If j = 1, then G1[p + 1] = (10w1−11)[p + 1] = 1 if and only if p = 0 or p = w1,
which proves the induction base. Now assume that j ≥ 2. Then Gj [p + 1] = 1 if
and only if (Gj−10

wj−sj−1−1Gj−1)[p + 1] = 1 if and only if (Gj−1[p + 1] = 1
or Gj−1[p + 1 − |Gj−1| − wj + sj−1 + 1] = 1) if and only if (Gj−1[p + 1] = 1
or Gj−1[p + 1 − sj−1 − 1 − wj + sj−1 + 1] = Gj−1[p + 1 − wj] = 1) (since
|Gj−1| = sj−1 + 1). By induction, this is true if and only if

∃x1, . . . , xj−1 ∈ {0, 1}

{
j−1
∑

i=1

xi · wi = p or
j−1
∑

i=1

xi · wi = p − wj

}

But this is equivalent to ∃x1, . . . , xj ∈ {0, 1} :
∑j

i=1 xi · wi = p. ut

Note that in Thm. 1, P-hardness already holds for a binary alphabet. If we allow the
terminal alphabet to be part of the input, then we can prove P-hardness even for a re-
stricted form of SLPs, so called restricted Lempel-Ziv encodings, briefly RLZ-encoding.
For a given string w ∈ Σ+, the RLZ-factorization of w is the unique factorization
w = f1f2 · · · fk such that for every i ≥ 1, fi is either the longest non-empty prefix
of fifi+1 · · · fk such that there exists 1 ≤ j, k < i with fi = fj · · · fk, or fi is the
first symbol of fifi+1 · · · fk. In this situation, the RLZ-encoding of w, briefly RLZ(w)
is the sequence c1c2 · · · ck, where ci = fi if fi ∈ Σ or ci = [j, k] if fjfj+1 · · · fk is
the longest non-empty prefix of fifi+1 · · · fk. Note that from RLZ(w) one can easily
construct an SLP generating w.

Example 1. Let w = abaababaabaababaababa. Then the RLZ-factorization of w is
a |b |a |aba |baaba |ababaaba |ba and RLZ(w) = aba[1, 3][2, 4][4, 5][2, 3].

The following theorem solves an open problem from [7], where a corresponding
result for LZ-encoded input strings (see [7] for the definition) was shown:

4

Theorem 2. The following problem is P-complete:
INPUT: An alphabet Σ, a string w ∈ Σ∗ given by its RLZ-encoding, a position

i ∈ N, and a ∈ Σ

QUESTION: w[i] = a?

Proof. Membership in P follows from Thm. 1. For P-hardness we use almost the same
construction as in the proof of Thm. 1. For a given instance (w1, . . . , wn, t) of Super
Increasing Subset Sum we define strings G1, . . . , Gn ∈ {1, $1, . . . , $n}

∗ as follows,
where sj = w1 + · · · + wj for 1 ≤ j ≤ n:

G1 = 1$w1−1
1 1, Gj = Gj−1$

wj−sj−1−1
j Gj−1 for 2 ≤ j ≤ n

The proof of Thm. 1 shows that Gn[t + 1] = 1 if and only if there exist x1, . . . , xn ∈
{0, 1} such that

∑n

i=1 xi ·wi = t. It remains to prove that RLZ(Gn) can be constructed
in NC from (w1, . . . , wn, t). In the following let `(i) for i ∈ N be the number of factors
in the RLZ-factorization of ai. One can show that `(i) ∈ O(log(i)) and RLZ(ai) can
be calculated in NC from the binary encoding of i. Now we determine the number λi of
factors of the RLZ-factorization of the string Gi. We have λ1 = 2+`(w1−1) and λi =

λi−1+`(wi−si−1−1)+1 for i > 1. Thus, λi = (i+1)+
∑i

k=1 `(wi−si−1−1). Also
the numbers λi (1 ≤ i ≤ n) can be calculated in NC using the prefix sum algorithm.
Now we can set in parallel for all 1 ≤ i ≤ n the factor from position λi−1 + 1 to λi

of RLZ(Gn) (where λ0 = 0) to RLZ($
wi−si−1−1
i)+λi−1 [1, λi−1], where RLZ(w)+j is

the same as RLZ(w) but where j is added to all numbers. ut

4 Complexity of Embedding

We say that a string p = a1 · · · am can be embedded into a string t = b1 · · · bn (ai, bj ∈
Σ), briefly p ↪→ t, if there exist positions 1 ≤ i1 < i2 < · · · < im ≤ n such that
bik

= ak for 1 ≤ k ≤ m. One also says that p is a subsequence of t, see the following
diagram:

a1 a2 a3 · · · am−1 am

· · · a1 · · · a2 · · · a3 · · · am−1 · · · am · · ·

In this section, we study the complexity of the following problem Fully Compressed
Embedding, for short Embedding:

INPUT: SLPs P and T

QUESTION: eval(P) ↪→ eval(T)?
The following upper bound for Embedding is easy to prove:

Proposition 1. Embedding belongs to PSPACE.

Proof. The straight-forward greedy algorithm that solves the embedding problem for
uncompressed strings in linear time results in a PSPACE-algorithm for SLP-compressed
strings. The crucial observation is that a position in a string, which is represented by an
SLP, can be stored in polynomial space with respect to the size of the SLP. ut

5

A simple greedy algorithm for checking eval(P) ↪→ eval(T) can be easily imple-
mented within the time bound |eval(P)| · |T |O(1) ≤ 2O(|P |) · |T |O(1). This shows in
particular that Embedding is fixed parameter tractable in the sense of [5], when the
size of the pattern-SLP is chosen as the parameter (which is reasonable, because in
most patter matching applications the pattern is much smaller than the text).

Our main result states that Embedding is hard for the complexity class Θ
p
2 . In

Sec. 4.1, we will first only prove NP-hardness. Then, in Sec. 4.2 we show how to simu-
late boolean operations within Embedding. From this, we will deduce hardness for Θ

p
2

in Sec. 4.3.

4.1 NP-hardness of Embedding

Let us recall the well-known NP-complete problem Subset Sum (see [6]):
INPUT: Integers w1, . . . , wn, t in binary form
QUESTION: Do there exist x1, . . . , xn ∈ {0, 1} with

∑n

i=1 xi · wi = t?

Theorem 3. Embedding is NP-hard.

Proof. We prove the theorem by a polynomial time reduction from Subset Sum to
Embedding. Let t, w̄ = (w1, . . . , wn) be input data for Subset Sum; w.l.o.g. assume
that n > 1. We are going to construct SLPs G and H such that there exists a subset of
{w1, . . . , wn} with sum equal to t if and only if eval(G) ↪→ eval(H).

We begin with some notation. Let s = w1 + · · ·+wn and N = 2ns. We can assume
that t < s. Let x ∈ {0, . . . , 2n − 1} be an integer. With xi (1 ≤ i ≤ n) we denote
the i-th bit in the binary representation of x, where x1 is the least significant bit. Thus,
x =

∑n

i=1 xi2
i−1. We define x ◦ w =

∑n

i=1 xiwi, thus, x ◦ w is the sum of the subset
of {w1, . . . , wn} encoded by the integer x. Hence, t, w is a positive instance of Subset
Sum if and only if ∃x ∈ {0, . . . , 2n − 1} : x ◦w = t. We now define strings g and h as
follows:

h1 =
2n−1∏

x=0

(10s) = (10s)2
n

h2 = 02N h3 =
2n−1∏

x=0

(0x◦w10s−x◦w)

h4 = 0t+1 h0 = h1h2h3h4 h = h5N
0

g0 = 103N+t10N+1 g = g5N−1
0

We use the symbol
∏

to denote the concatenation of the corresponding words per-
formed in order the x = 0, . . . , 2n − 1.

We first claim that the strings g and h can be generated by SLPs of polynomial size
with respect to the size of the input t, w. Note that with only one exception, namely
the definition h3, only a constant number of concatenations and integer exponents with
polynomially many bits are used in the definition of g and h. These constructions can
be directly realized by SLPs. Finally, a construction of a polynomial size SLP for h3

was presented in [12].
Now we prove that g ↪→ h if and only if ∃x ∈ {0, . . . , 2n − 1} : x ◦ w = t.

First assume that there is x ∈ {0, . . . , 2n − 1} such that x ◦ w = t. Consider the prefix

6

h1h2h3h4h1 of h. We can embed g0 = 103N+t10N+1 into h1h2h3h4h1: map the initial
1 of g0 to the x-th block 10s of h1. Since x◦w = t, the number of 0’s in h1h2h3 between
the 1 in the x-th block 10s of h1 and the x-th block 0x◦w10s−x◦w = 0t10s−t of h3 is
precisely N −(x−1)2s +2N +(x−1)2s +x ·w = 3N + t, see the following diagram:

10s · · · 10s · · · 10s

x-th block

0 · · · 0 · · · 0t10s−t · · ·

x-th block

h1
︷ ︸︸ ︷

h2
︷ ︸︸ ︷

h3
︷ ︸︸ ︷

︸ ︷︷ ︸

N−(x−1)2s zeros
︸ ︷︷ ︸

2N zeros
︸ ︷︷ ︸

(x−1)2s+t zeros

To these 3N + t many 0’s we map the first 3N + t many 0’s of g0. Then the second
1 of g0 is mapped to the 1 in the x-th block 0t10s−t of h3. The next N + 1 many 0’s
following this 1 are used for embedding the remaining N + 1 0’s of g0. The crucial
point is that after this embedding, we again arrive at the 1 in the x-th block 10s of h1,
see the following diagram:

· · · 0t10s−t · · ·

x-th block

0 · · · 0 10s · · · 10s · · · 10s

x-th block

h3
︷ ︸︸ ︷

h4
︷ ︸︸ ︷

h1
︷ ︸︸ ︷

︸ ︷︷ ︸

N−(x−1)2s−t
zeros

︸ ︷︷ ︸

t+1
zeros

︸ ︷︷ ︸

(x−1)2s

zeros

This observation shows that gk
0 can be embedded into hk+1

0 = (h1h2h3h4)
k+1 for every

k ≥ 1. In particular g = g5N−1
0 ↪→ h5N

0 = h.
Next, we prove the reverse direction. Assume that g ↪→ h. We have to show that

there is x ∈ {0, . . . , 2n − 1} such that x ◦ w = t. In order to deduce a contradiction,
assume that x ◦ w 6= t for all x ∈ {0, . . . , 2n − 1}. Not every 0 in h can be the image
of a 0 from g under our embedding g ↪→ h. Let us estimate the total number of such
unused 0’s. Our embedding g ↪→ h consists of 5N − 1 disjoint embeddings of g0 into
h. There are two 1’s in g0 and there are exactly 3N + t many 0’s between them. We
claim that there is no pair of two 1’s with exactly 3N + t many 0’s between them in
h. In order to prove this, we consider two 1’s in h and make a case distinction on the
position of the first 1. First assume that the left 1 belongs to h1. More precisely, assume
that the left 1 is the 1 in the y-th block of 10s of h1. By reading precisely 3N + t many
0’s in h, we arrive at position t + 1 in the y-th block of h3 (note that t < s). But since
y ◦ w 6= t, the (t + 1)-th symbol in the y-th block of h3 is not 1. This prove the case
that the left 1 belongs to h1. The following diagram visualizes the situation (where we
assume that t > y ◦ w):

10s · · · 10s · · · 10s

y-th block

0 · · · 0 · · · 0y◦w10s−y◦w · · ·

y-th block

h1
︷ ︸︸ ︷

h2
︷ ︸︸ ︷

h3
︷ ︸︸ ︷

︸ ︷︷ ︸

N−(y−1)2s zeros
︸ ︷︷ ︸

2N zeros
︸ ︷︷ ︸

(y−1)2s+t zeros
︸ ︷︷ ︸

3N+t zeros

7

In the second case, the left 1 in our pair is situated in h3. Then, by reading 3N + t many
0’s in h, we end up in h2, which does not contain 1’s at all:

· · · 0 · · · 010 · · · 0 · · · 0 · · · 0

h3
︷ ︸︸ ︷

h4h1
︷ ︸︸ ︷

h2
︷ ︸︸ ︷

︸ ︷︷ ︸

N zeros
︸ ︷︷ ︸

N+t+1 zeros
︸ ︷︷ ︸

2N zeros

We have now shown that for each embedding of g0 in h between the images of the two
1’s in g0, there must be at least 3N + t + 1 many 0’s in h. Thus, for every embedding
of g0 = 103N+t10N+1 in h we need at least 3N + t + 1 + N + 1 = 4N + t + 2 many
0’s in h. Since g = g5N−1

0 , we need at least

(4N + t + 2) · (5N − 1) = 5N · (4N + t + 1) + (N − t − 2) > 5N · (4N + t + 1)

many 0’s in h. For the last inequality note that N = s · 2n ≥ 4s > s + 2 > t + 2.
We obtain a contradiction, because from the construction of h, we see that h contains
precisely 5N · (4N + t + 1) many 0’s. ut

4.2 Simulating boolean operations

Proposition 2. For SLPs G and H over a terminal alphabet Σ, |Σ| ≥ 1, we can
construct in polynomial time SLPs G′ and H ′ over the terminal alphabet Σ such that

eval(G) ↪→ eval(H) ⇔ eval(G′) 6↪→ eval(H ′). (1)

Proof. Let eval(G) = g1 · · · gk and eval(H) = h1 · · ·hm. For a ∈ Σ let Xa =
(a1 · · · an)m+1, where {a1, . . . , an} = Σ \ {a} (the order on Σ \ {a} is arbitrary
here, if n = 0, then Xa = ε). Let a ∈ Σ be arbitrary and let G′ and H ′ be SLPs with

eval(G′) = eval(H)a = h1 · · ·hma and eval(H ′) = Xg1
g1 · · ·Xgk

gk.

These SLPs can be constructed in polynomial time from G and H . For G′ this is clear.
For H ′ we have to replace every terminal symbol a in G by a new nonterminal A

and add the rule A → Xaa. It remains to show (1). First assume that eval(G) 6↪→
eval(H). Then we can write eval(H) = R1g1 · · ·RlglRl+1, where l < k and for
1 ≤ i ≤ l + 1, the word Ri does not contain the letter gi. Since |Ri| ≤ m, for every
1 ≤ i ≤ l + 1 it is true that Ri ↪→ Xgi

. Thus, we can embed the prefix eval(H) =
R1g1 · · ·RlglRl+1 of eval(G′) into the prefix Xg1

g1 · · ·Xgl
glXgl+1

of eval(H ′). The
final letter a of eval(G′) can be either also mapped to Xgl+1

(if a 6= gl+1; here it is
important that |Xgl+1

| > m so that Rl+1 does not completely occupy Xgl+1
) or it can

be mapped to gl+1 (if a = gl+1).

R1 g1 R2 g2 · · · R` g` R`+1 a

Xg1
g1 Xg2

g2 · · · Xg`
g` Xg`+1

g`+1 · · ·

8

Now assume that eval(G) ↪→ eval(H). Then we can write eval(H) = R1g1 · · ·RkgkR,
where for 1 ≤ i ≤ k, the word Ri does not contain the letter gi. We claim that

∀1 ≤ i ≤ k : R1g1 · · ·Rigi 6↪→ Xg1
g1 · · ·Xgi−1

gi−1Xgi
. (2)

Our proof goes by induction on i. In the case i = 1 this follows, since g1 does not occur
in Xg1

. For the induction step assume that (2) is true for some i ≥ 1 and that moreover

R1g1 · · ·Ri+1gi+1 ↪→ Xg1
g1 · · ·Xgi

giXgi+1
. (3)

Recall that the last symbol gi+1 of R1g1 . . . Ri+1gi+1 does not occur in the suffix Xgi+1

of Xg1
g1 . . . Xgi

giXgi+1
. Thus, (3) implies that already R1g1 · · ·RigiRi+1gi+1 ↪→

Xg1
g1 · · ·Xgi−1

gi−1Xgi
gi and hence R1g1 · · ·RigiRi+1 ↪→ Xg1

g1 · · ·Xgi−1
gi−1Xgi

.
But this contradicts (2).

For i = k, (2) implies R1g1 · · ·Rkgk 6↪→ Xg1
g1 · · ·Xgk−1

gk−1Xgk
. But then

eval(G′) = R1g1 · · ·RkgkRa 6↪→ Xg1
g1 · · ·Xgk−1

gk−1Xgk
gk = eval(H ′). ut

Thm. 3 and Prop. 2 immediately imply that Embedding is also coNP-hard.

Proposition 3. For SLPs G1, H1, G2, H2 over a terminal alphabet Σ, |Σ| ≥ 2, we can
construct in polynomial time SLPs G, H over the terminal alphabet Σ such that

(eval(G1) ↪→ eval(H1) and eval(G2) ↪→ eval(H2)) ⇔ eval(G) ↪→ eval(H).

Proof. W.l.o.g. assume that G1 and G2 (resp. H1 and H2) have disjoint sets of non-
terminals. Let Si (resp. Ti) be the start non-terminal of Gi (resp. Hi). Let N = 1 +
max{|eval(H1)|, |eval(H2)|}. Then G (resp. H) contains all productions of G1 and
G2 (resp. H1 and H2) and the additional production S → S11

N01NS2 (resp. T →
T11

N01NT2), where 0, 1 ∈ Σ. Here, S (resp. T) is the start non-terminal of G (resp.
H). Thus,

eval(G) = eval(G1) 1N 0 1N eval(G2)

eval(H) = eval(H1) 1N 0 1N eval(H2).

Clearly, if eval(G1) ↪→ eval(H1) and eval(G2) ↪→ eval(H2), then eval(G) ↪→ eval(H).
For the other direction note that if eval(G1)1

N01Neval(G2) can be embedded into
eval(H1)1

N01Neval(H2), then by the choice of N , the 0 at position |eval(G1)| +
N + 1 in eval(G1)1

N01Neval(G2) can neither be mapped to the prefix eval(H1) nor
to the suffix eval(H2) of eval(H). Thus, this 0 has to be mapped to the 0 at position
|eval(H1)| + N + 1 in eval(H1)1

N01Neval(H2). This implies that both eval(G1) ↪→
eval(H1) and eval(G2) ↪→ eval(H2). ut

Of course, using Prop. 2 and 3 we can also simulate an OR-operation. But the prob-
lem with our construction for NOT is that it cannot be iterated since one application
of the construction for Prop. 2 leads to a quadratic blow-up in the size of the SLPs.
Therefore, in order to encode circuits, we must also present a construction for OR:

Proposition 4. For SLPs G1, H1, G2, H2 over a terminal alphabet Σ, |Σ| ≥ 2, we can
construct in polynomial time SLPs G, H over the terminal alphabet Σ such that

(eval(G1) ↪→ eval(H1) or eval(G2) ↪→ eval(H2)) ⇔ eval(G) ↪→ eval(H).

9

Proof. W.l.o.g. assume that G1, G2, H1, and H2 have pairwise disjoint sets of non-
terminals. Let Si (resp. Ti) be the start non-terminal of Gi (resp. Hi). Let N = 1 +
|eval(G1)| + |eval(G2)|. Then G contains all productions of G1 and G2 and the addi-
tional production S → S101

N0S2. The SLP H contains all productions of G1, H1, G2,
H2 and the additional production T → T101

NS10S21
N0T2. Thus, we have

eval(G) = eval(G1) 0 1N 0 eval(G2)

eval(H) = eval(H1) 0 1N eval(G1) 0 eval(G2) 1N 0 eval(H2).

Clearly, if eval(G1) ↪→ eval(H1) or eval(G2) ↪→ eval(H2), then eval(G) ↪→ eval(H).
For the other direction assume that eval(G) = eval(G1) 0 1N 0 eval(G2) can be em-
bedded into eval(H) = eval(H1) 0 1N eval(G1) 0 eval(G2) 1N 0 eval(H2). Consider
the 1N -block of eval(G). If a 1 from this block is mapped to the prefix eval(H1) of
eval(H), then eval(G1) ↪→ eval(H1). If a 1 from the 1N -block of eval(G) is mapped
to the first 1N -block of eval(H), then the 0 at position |eval(G1)| + 1 in eval(G) can-
not be mapped right of the 0 at position |eval(H1)| + 1 in eval(H). But then again the
prefix eval(G1) of eval(G) is embedded into the prefix eval(H1) of eval(H). Com-
pletely analogously it follows that if a 1 from the 1N -block of eval(G) is mapped to the
suffix eval(H2) of eval(H) or to the second 1N -block of eval(H), then eval(G2) ↪→
eval(H2). The only remaining case, namely that every 1 in the 1N -block of eval(G) is
mapped into eval(G1) 0 eval(G2) cannot occur, since N > |eval(G1)eval(G2)|. ut

4.3 Hardness for Θ
p

2

Recall that Θ
p
2 is the class of all problems that can be accepted by a deterministic poly-

nomial time machine with access to an oracle from NP and such that furthermore all
questions to the oracle are asked in parallel [23].

Proposition 5. If A ⊆ {0, 1}∗ is NP-complete, then the following problem is Θ
p
2-

complete:
INPUT: A boolean circuit C with input gates labeled by words over {0, 1}?
QUESTION: Does C evaluate to true when every input gate g that is labeled with

w ∈ {0, 1}∗ evaluates to true (resp. false) if w ∈ A (resp. w 6∈ A).

Proof. For the membership in Θ
p
2 note that we can evaluate all input gates of C in

parallel by using the language A as an oracle. Then, the whole circuit can be evaluated
in polynomial time. Hardness for Θ

p
2 follows from a result from [23]: It is Θ

p
2-complete

to decide for a given list of strings w1, w2, . . . , wn ∈ {0, 1}∗, whether the number
|{i | wi ∈ A}| is odd. By taking a boolean circuit for parity, this problem can be easily
encoded into a boolean circuit with A-instances at input gates. ut

Theorem 4. Even for SLPs with a binary terminal alphabet, Embedding is Θ
p
2-hard.

Proof. Let C be a circuit with input gates labeled with instances of the NP-complete
Subset Sum problem. By the usual doubling argument, we can assume that negation
gates only occur directly above input gates. We first define inductively for every gate c

strings u(c) and v(c) and then argue that (i) c evaluates to true if and only if u(c) ↪→

10

v(c) and (ii) u(c) and v(c) can be generated by “small” SLPs. If c is an unnegated input
gate that is labeled with the Subset Sum instance I then u(c) = g and v(c) = h, where
g and h are the two strings that are constructed from I in the proof of Thm. 3. If c is
a negated input gate that is labeled with with the Subset Sum instance I , then again
we first construct from I the words g and h as described in the proof of Thm. 3. Then
we apply the construction from the proof of Prop. 2 to g and h and assign the resulting
strings to u(c) and v(c), respectively. For AND- and OR-gates we use the constructions
from Prop. 3 and 4: If c is an AND-gate with inputs c1 and c2, then

u(c) = u(c1) 1N 0 1N u(c2) and v(c) = v(c1) 1N 0 1N v(c2), (4)

where N = 1 + max{|v(c1)|, |v(c2)|}. If c is an OR-gate with inputs c1 and c2, then

u(c) = u(c1) 0 1N 0u(c2) and v(c) = v(c1) 0 1N u(c1) 0u(c2) 1N 0 v(c2), (5)

where N = 1 + |u(c1)| + |u(c2)|. From Thm. 3 and Prop. 2–4 it follows immediately
that C evaluates to true if and only if u(o) ↪→ v(o), where o is the output gate of C.

It remains to argue that for every gate c, the strings u(c) and v(c) can be generated
by SLPs of size polynomially bounded in the size of the circuit C (which is the number
of gates plus the size of all Subset Sum instances at the leafs). Note that if we define
n(c) = max{|u(c)|, |v(c)|} then we have n(c) ≤ 8 ·max{n(c1), n(c2)}+5 in case c is
an AND- or OR-gate with inputs c1 and c2. It follows that n(c) is bounded exponentially
in the size of the circuit C. Moreover, we can calculate the binary representations of the
lengths |u(c)| and |v(c)| for every gate c in polynomial time. Thus, we can construct
SLPs of polynomial size for the factors 1N in (4) and (5). This implies that for every
gate c, u(c) and v(c) can be generated by SLPs of polynomial size. ut

Let us close this paper with a corollary of Thm. 4. In the problem Longest Common
Subsequence (LCS) (resp. Shortest Common Supersequence (SCS)), one asks for
a finite set R of strings and n ∈ N whether there is a string w with |w| ≥ n and
∀v ∈ R : w ↪→ v (resp. |w| ≤ n and ∀v ∈ R : v ↪→ w). These problems are known to
be NP-complete, but for |R| = 2 they can be solved in polynomial time (see [6]). For
SLP-encoded input strings, LCS and SCS can be both solved in PSPACE.

Corollary 1. The problems LCS and SCS for SLP-encoded input strings are Θ
p
2-hard,

even if |R| = 2 for the input set R.

Proof. For u, v ∈ Σ∗ we have u ↪→ v if and only if ({u, v}, |u|) (resp. ({u, v}, |v|) is
a true instance of LCS (resp. SCS). Hence, the corollary follows from Thm. 4. ut

5 Open problems

The main open problems that remains from this paper concerns the precise complexity
of Embedding. Our results leave a gap from Θ

p
2 to PSPACE. In Thm. 2 (P-completeness

of querying RLZ-encoded input strings) it is open, whether the underlying alphabet can
be fixed to, e.g., a binary alphabet.

Acknowledgments This work was done during a visit of the first author at University
of Stuttgart, Germany, which was supported by the DFG project GELO. The first author
was also supported by a grant from the project INTAS 04-77-7173.

11

References
1. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in Z-compressed

files. J. Comput. Syst. Sci, 52(2):299–307, 1996.
2. M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit

evaluation. SIAM J. Comput., 26(1):138–152, 1997.
3. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity

of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci.,
65(2):332–350, 2002.

4. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.

5. R. G. Downey and M. R. Fellows. Parametrized Complexity. Springer, 1999.
6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP–completeness. Freeman, 1979.
7. L. Gasieniec, A. Gibbons, and W. Rytter. Efficiency of fast parallel pattern searching in

highly compressed texts. In Proc. MFCS’99, LNCS 1672, pages 48–58. Springer, 1999.
8. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-

Ziv encoding (extended abstract). In Proc. SWAT 1996, LNCS 1097, pages 392–403.
Springer, 1996.

9. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -
Completeness Theory. Oxford Univ. Press, 1995.

10. D. Gushfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univ. Press, 1999.
11. H. J. Karloff and W. L. Ruzzo. The iterated mod problem. Inf. Comput., 80(3):193–204,

1989.
12. M. Lohrey. Word problems on compressed word. In Proc. ICALP 2004, LNCS 3142, pages

906–918. Springer, 2004. long version appears in SIAM J. Comput.
13. N. Markey and P. Schnoebelen. A PTIME-complete matching problem for SLP-compressed

words. Inf. Process. Lett., 90(1):3–6, 2004.
14. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for

strings in terms of straight-line programs. In Proc. CPM 97, LNCS 1264, pages 1–11.
Springer, 1997.

15. G. Navarro. Regular expression searching on compressed text. J. Discrete Algorithms, 1(5–
6):423–443, 2003.

16. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
17. W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc.

ESA’94, LNCS 855, pages 460–470. Springer, 1994.
18. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed

words. In Jewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 262–272. Springer, 1999.

19. W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM’99, LNCS 1725,
pages 48–65. Springer, 1999.

20. W. Rytter. Compressed and fully compressed pattern matching in one and two dimensions.
Proceedings of the IEEE, 88(11):1769–1778, 2000.

21. W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1–3):211–222, 2003.

22. W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input.
In Proc. ICALP 2004, LNCS 3142, pages 15–27. Springer, 2004.

23. K. W. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theor. Comput. Sci., 51:53–80, 1987.

24. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory, 23(3):337–343, 1977.

12

