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Abstract—We present an overview of the combinatorial
framework for similarity search. An algorithm is combinatorial
if only direct comparisons between two pairwise similarity
values are allowed. Namely, the input dataset is represented by
a comparison oracle that given any three points x, y, z answers
whether y or z is closer to x. We assume that the similarity
order of the dataset satisfies the four variations of the following
disorder inequality: if x is the a’th most similar object to y and
y is the b’th most similar object to z, then x is among the
D(a + b) most similar objects to z, where D is a relatively
small disorder constant. Combinatorial algorithms for nearest
neighbor search have two important advantages: (1) they do
not map similarity values to artificial distance values and do
not use triangle inequality for the latter, and (2) they work
for arbitrarily complicated data representations and similarity
functions.

Ranwalk, the first known combinatorial solution for nearest
neighbors, is randomized, exact, zero-error algorithm with
query time that is logarithmic in number of objects. But
Ranwalk preprocessing time is quadratic. Later on, another
solution, called combinatorial nets, was discovered. It is de-
terministic and exact algorithm with near-linear time and
space complexity of preprocessing, and near-logarithmic time
complexity of search. Combinatorial nets also have a number
of side applications. For near-duplicate detection they lead to
the first known deterministic algorithm that requires just near-
linear time + time proportional to the size of output. For any
dataset with small disorder combinatorial nets can be used to
construct a visibility graph: the one in which greedy routing
deterministically converges to the nearest neighbor of a target
in logarithmic number of steps. The later result is the first
known work-around for Navarro’s impossibility of generalizing
Delaunay graphs.
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I. INTRODUCTION

Statements of many algorithmic problems including sim-
ilarity search start with “Given n objects in metric space...”.
To formalize these problems we have to (1) define the data
representation and (2) make some assumptions about the
dataset. So far many algorithms were designed for specific
data model, such as Hamming cube [51], or for so called
general metric spaces [68] with assumptions that some
intrinsic dimension [21], [44], [49] is small.

However, there is a large class of instances that requires
principally new approach. We say that a dataset has the
separation effect if the ratio between the largest and the
smallest pairwise distances is below 2. Take for example the

similarity measure “number of joint friends” for members of
a social network. In a typical case there are at most 20 out
200 friends in common. This give us 0.9 in the so called
Jaccard distance for two really similar people and 1.0 for
completely unrelated. The similar story is observed with
texts (similarity by words), webpages (similarity by referring
sites), movies (similarity by reviewers and ratings) and so
on. In all this cases all objects appeared to be “unique”.
Unfortunately, datasets with separation effect always have
the doubling dimension close to the worst possible. Also
the branch-and-bound techniques have to visit all objects,
because the metric triangle inequality produces no new
knowledge on yet uncomputed distances.

Addressing the challenge of separation effect, the combi-
natorial framework emerged in the papers by Goyal, Lifshits
and Schütze [32] and by Lifshits and Zhang [55]. Instead
of the availability of the distance between any two points in
dataset S, suppose we are only given a comparison oracle
O which can tells whether y is closer to x or z is closer
to x. In other words, it discards all the metric information
between points, with only the relative closeness comparisons
remained. We define rankx(y) to be an integer position of y
in the list of all object in the dataset sorted by closeness to
x. The central assumption of the combinatorial framework
is that R(x, y) = max(rankx(y), ranky(x)) is a quasimet-
ric with some relatively small disorder constant D. More
formally, we assume that the following disorder inequality
holds: R(x, z) ≤ D(R(x, y) + R(y, z)). This assumption
is based on experimental observations on Reuters corpus of
news articles [32].

In this paper we present a formal description of the
combinatorial framework, list all known results and provide
an extensive agenda for further research.

II. THE COMBINATORIAL FRAMEWORK

The combinatorial framework is a model of computation
for problems dealing with informal concept of “closeness”.
In literature both terms of similarity and distance are used:
(1) when points are close to each other we say “distance is
small” or “similarity is high”, (2) for distance functions, the
triangle inequality is usually assumed. The combinatorial
framework is focused on the notion of similarity by not
assuming the triangle inequality for distance values.



Instead of providing exact values of similarity function σ
we give an access to the comparison oracle which, for each
query (x, y, z), tells whether σ(x, y) < σ(x, z) or σ(x, y) >
σ(x, z). For simplicity, throughout this paper we assume that
no tie exists.

Consider some dataset S of n points. For each point x,
all other n − 1 points y can be sorted by σ(x, y). We call
all these n sorted lists together to be a similarity order for
the dataset S. Indeed, this is the only information we can
get from the comparison oracle. For any points x, y ∈ S,
define rankx,S(y) to be the position of y when the elements
of S are sorted according to similarity to x in the deceasing
order. We omit S when it is clear from the context. For
convenience let rankx(x) = 0. We define a combinatorial
ball as B(x, r) = {y : rankx(y) < r}.

Once we waive the real values of similarities, we lost
almost all the knowledge about the dataset. In order to make
algorithmic problems tractable we introduce a consistency
assumption for the similarity order. Namely, we assume
that the rank function satisfies the following weak triangle
inequalities:

rankx(y) ≤ D(rankx(z) + ranky(z)), (1)
rankx(y) ≤ D(rankx(z) + rankz(y)), (2)
rankx(y) ≤ D(rankz(x) + ranky(z)), (3)
rankx(y) ≤ D(rankz(x) + rankz(y)). (4)

The above inequalities are called the disorder inequalities,
and the minimal constant D making them true is called the
disorder constant. Some comments are in order. First, we
list all four possible disorder inequalities simply because
there seems not to be any strong reason that some are more
reasonable than others. Second, by putting z = y in the first
inequality, we have that

rankx(y) ≤ Dranky(x). (5)

Thus any one of the above four disorder inequalities implies
the other three with a constant D′ = D2. The disorder con-
stant D captures the intuitive notion of intrinsic dimension.
The following lemma illustrate this correspondence in the
case of fixed dimensions:

Lemma ([32]). For sufficiently large hypercube in the d-
dimensional integer grid Zd with Euclidean distance, its
disorder constant is 2d−1 up to a multiplicative constant
close to one.

Let us compare the concept of disorder to distance-based
notions of doubling dimension and expansion rate. We need
the following definitions.

Definition 1. (disorder dimension) Let (S, σ) be a set in
similarity space and D(S) be the disorder constant of S.
Then we call (1 + logD) the disorder dimension of S.

Definition 2. The metric ball MB(p, r) is the set of all
possible objects within distance r from p. The expansion
rate of a set S in a metric space is the minimal number
c such that ∀p ∈ S, ∀r, it holds that |MB(p, 2r) ∩ S| ≤
c|MB(p, r) ∩ S|.

Lemma. (Small expansion rates imply small disorder con-
stants [55]) For any n-point set S with the expansion rate
c in a metric space, all the four disorder inequalities are
satisfied with D = c2.

Lemma. (Doubling effect in the combinatorial framework
[55]) Consider a set S of n points satisfying the disorder
inequalities. Then for any point p and integer r the com-
binatorial ball B(p, 2r) can be covered by at most O(D2)
combinatorial balls of radius r.

Indyk’s examples. In email correspondence with the
author Indyk showed a dataset with small doubling constant
but large disorder constant, and another dataset with small
disorder constant but large doubling constant and expansion
rate.

Small doubling constant but large disorder: A union of
(slightly perturbed) points on a circle, with its center z.
Here, the doubling dimension is constant, while the disorder
dimension is high. Specifically, the two nearest neighbors x
and y of z could be a pair of antipodal points, but rankx(y)
could be very large.

Small disorder but large doubling constant: A set of n
points p1, ..., pn, such that, if i 6= j, d(pi, pj) = 10n+|i−j|.
The rank for ties are broken arbitrarily. It is not hard to see
that i, j, |i − j| ≤ rankpi(pj) ≤ 2|i − j|, therefore, the
disorder constant is at most 2. However, note that the points
are almost equidistant, in which case the doubling constant
and the expansion rate is close to n.

We think that the combinatorial framework is worth
studying for a number of reasons:
• New solvable classes. Problems like nearest neighbors

are intractable in general. Thus, researchers are looking
for additional assumptions and subclasses of the input
data that make the problem easier. The combinatorial
framework provides such a new subclass: all datasets
with sublinear disorder constant. In particular, we can
solve nearest neighbors even for some datasets not
satisfying the metric triangle inequality.

• Addressing heterogeneous data models. In many
modern applications object representations are far from
simple abstractions like Euclidean space. For instance,
consider a description of a blog: language, geographic
location (dictionary parameters), age, number of posts
(numerical parameters), referring links and reader list
(graph parameters), text of profile and posts (text pa-
rameters) and posting timestamps (time parameters).
Such a heterogeneous description needs a quite compli-
cated similarity function. E.g. it can include manually



defined logical rules and threshold functions. The com-
binatorial framework can work with arbitrarily compli-
cated similarity functions without any customization.
This is an important advantage comparing to well-
established locality-sensitive hashing approach [43] that
requires designing new hash functions for every data
model.

• Using only relative order. In many applications, de-
signing a similarity (distance) function is challenge
by itself. With the combinatorial framework this task
becomes easier. Say, when similarity itself is a subject
to learn [8], we need only comparative training infor-
mation.

• Non-reducibility to studied models. The combinato-
rial framework draw some inspiration from previously
studied models, most notably doubling dimension [34],
[50], [49]. Despite some known results on repairing
quasimetrics [57], we do not see a way to reduce this
new model to the old ones. If you try to define a
metric for some similarity order satisfying the disorder
inequality you can achieve the metric triangle inequality
or a small doubling dimension, but not both. Also, in
the combinatorial framework, the full similarity order is
not given as a part of the input. Thus, introducing any
new rank-based distance can be computationally very
expensive.

III. COMBINATORIAL ALGORITHMS

Randomized algorithms. Two new randomized algo-
rithms for exact nearest neighbor search, Ranwalk and
Arwalk were presented in the seminal paper on the com-
binatorial framework [32]. They are the first ones known to
be purely combinatorial in the sense defined above. They
bear some resemblance to the greedy search algorithms for
small world networks (see, e.g., [45]).

Ranwalk performs a random walk in the search phase.
It requires O(n2) preprocessing space, O(n2 log n) prepro-
cessing time and uses expected O(D log n log log n + D3)
time for answering a query. It always produces the correct
answer.

The Arwalk algorithm (walk via navigation
array) requires O(nD log n log log n) preprocessing
space, O(n2 log n) preprocessing time and uses
O(D log n(log log n+ log 1/δ) +D3) time for answering a
query. For every query it produces the correct answer with
probability at least 1 − δ. The underlying data structure,
called navigation array, is a n × D′ × log n table of
pointers to points in the database S. Informally, for every
point x ∈ S and every k ≤ log2 n we keep pointers to
D′ = D log log n random points in the n/2k neighborhood
of x.

The analysis of Arwalk shows that similarity search is
tractable (near-linear preprocessing space, near-logarithmic

query time) when the disorder dimension logD + 1 is at
most log log n.

Deterministic and exact algorithm for nearest neighbor
search. Combinatorial nets [55] have a deterministic pre-
processing algorithm of D7n log2 n time complexity and a
search algorithm of D4 log n time complexity. Note that the
subquadratic time complexity requires a computation even
less than obtaining the comparison information between all
pairs.

Deterministic discovery of all near-duplicates. Detect-
ing and eliminating replicated documents is recognized as
one of the central problems for search engines [14], [9], [17],
[47]. Notice that this is a typical situation of the separation
effect: Almost all distances in the range [ 12 , 1], since 50%
similarity is considered to be threshold for duplicates and
thus all “original” documents have over one half distances
between each other. Thus the metric triangle inequality is
non-informative and doubling constant/expansion rate are
close to the maximal possible. It was shown [55] that the
combinatorial framework provides efficient solution to near-
duplicates. Assume that the similarity oracle can also answer
queries “Whether similarity between x and y is above the
duplicate threshold or not?” Then all pairs of near-duplicates
can be deterministically found in time poly(D)(n log2 n +
|Output|).

Small world design. Starting from the seminal paper of
Kleinberg [45], navigating schemes for various small world
models were intensively studied. Designing peer-to-peer
network protocols such as Meridian [67] raises the following
Small World Design problem: given n nodes in some metric
space, construct a small number of out-going connections for
every node such that from any given starting point greedy
routing leads to the nearest neighbor of the target point.
This problem was solved using the combinatorial framework
[55]. Namely, for any dataset with disorder constant D, its
visibility graph can be constructed in poly(D)n log2 n time
and with O(D4 log n) out-degrees. The greedy-style local
search in visibility graph finds the exact nearest neighbor
of the target destination by at most log n moves on the
graph edges. And as a corollary, visibility graph creates
O(D4 log n)-to-check certificates of being the exact nearest
neighbor. Such certificates are not known for previously
studied models.

The Voronoi diagram and the closely related Delaunay
graph have the following “local-implies-global” property: If
some point in the dataset is closer to query q than the center
of any adjacent Voronoi cell (i.e. any Delaunay neighbor),
then this point is the nearest neighbor of q. Thus, greedy
walk through Delaunay graph will eventually lead to the
nearest neighbor. In 1999 Navarro [60] made an attempt
to find a structure similar to Delaunay graph for a general
metric space. Unfortunately, he came up with the following
negative result:

Given the pairwise distances for a finite subset S of an



unknown metric space U , for each a, b ∈ S there exists a
choice for U where a and b are connected in the Delaunay
graph of S.

The combinatorial construction of visibility graph avoids
a similar negative barrier by using the concept of visible
neighbors instead of Delaunay neighbors.

IV. RELATED WORK

Similarity search in small intrinsic dimension. Let us
compare known combinatorial results to studies of growth
restricting metrics. Combinatorial nets are deterministic, as
opposed to the randomized data structure construction in
Hildrum et al. [36] (based on Karger and Ruhl [44] and
Plaxton et al. [64]). Comparing to cover-trees [11] com-
binatorial nets have similar preprocessing and search time
complexity. The key advantage of combinatorial approach
is that the “tractable” family of datasets (those with small
disorder constant) is a superset of datasets with bounded
growth rate.

Speaking about doubling dimension, combinatorial nets
find the exact nearest neighbor, compared to the approximate
ones by Krauthgamer and Lee [49], [50] and by Cole and
Gottlieb [22]. The near-linear construction of combinatorial
nets is deterministic while the data structure constructions
by Clarkson [20] and Har-Peled and Mendel [34] are ran-
domized.

Two more results from [11] and [22] are not yet matched
within the combinatorial framework: linear space bound and
handling insertions/delitions.

Near-duplicates. Compared to the results based on the
minhashing [13], combinatorial solution has deterministic
subquadratic guarantee for running time and works for
arbitrary similarity functions.

Small world design. Early work on this problem in-
cludes Arya and Mount’s discussion of a greedy ”routing”
scheme for approximate nearest neighbor search in Rd

[7]. Recent algorithms by Fraigniaud, Lebhar and Lotker
[30] and Slivkins [66] provide efficient solutions assuming
doubling dimension isO(log log n). Moreover, [30] provides
counterexamples for larger doubling dimensions. Combi-
natorial solution has a couple of advantages with respect
to the work above. First, it has deterministic guarantee
for convergence in logarithmic number of steps. Second, it
has no dependence on the aspect ratio, i.e. ratio between
maximal and minimal distances.

V. DIRECTIONS FOR FURTHER WORK

The combinatorial framework is just the first implemen-
tation of metric regularization idea. Instead of working
with numerical values of distances, we use ranks. Thus, we
“redefine” or “regularize” initial metric preserving similarity
order and could obtain nicer distribution properties at the
same time. Our results indicate that this is, indeed, a very
powerful tool for proximity problems.

Numerous questions remain to be answered. Here is a list
of problems that one can further study.

• Improving combinatorial framework. What if the D
in the disorder inequality is small on average instead of
in the worst case? If this is too restricting, what is the
largest fraction of bad triples we can handle? In some
scenarios, not all pairs are comparable, so for each x,
the other n − 1 points only form a partial order. How
should we change our assumption and algorithms? In
general, it is important to find a combinatorial notion of
dimension that is robust to exceptions and perturbations
but still provide efficient algorithms.

• Improving known algorithms. Can the complexity
of known algorithms be further decreased? When dis-
order constant is not given, can we compute (or at
least obtain some probabilistic guarantees) its value
in subquadratic time? How to handle insertions and
deletions, (important for using visibility graph in net-
work design)? Recall, insertions and deletions can be
efficiently supported in growth-restricted metric [22].
Can we avoid reconstructing the whole data struc-
ture when parameters of similarity function has been
changed? This is important since distance metric is
sometimes not fixed but a subject of learning [31].
What is the I/O complexity of combinatorial method
for datasets that does not fit to main memory? How it
should be implemented on distributed architectures like
MapReduce [25]?

• Further experiments. Compute disorder constant for
classic public datasets. Is it empirically true that simi-
larity order is more consistent for small ranks but has
more perturbations on large values? Find the actual
size of combinatorial nets needed to cover them. Test
our algorithms in the context of MESSIF project [10].
Suggest heuristics (e.g. using Gonzalez sequence [33]
for net construction) that can be useful. In practice we
do not know disorder in advance. How does it change
the implementation?

• Utilizing combinatorial framework. Can other prob-
lems dealing with distances be stated and efficiently
solved in combinatorial framework? It seems that for
some applications replacing distances by ranks can be
meaningful. In particular, it is interesting to consider
linear arrangement problem [18], closest pairs [24],
distance labelling [66], shortest paths [3], detecting
communities [61], and dimensionality reduction [15].
There is a variant of low-distortion embeddings focus-
ing on local distortion guarantees [1]. How to construct
embeddings with low rank-distortion? The kNN rule
is just one of solutions for automatic classification
problem. Can other approaches also be formalized
within combinatorial framework? How known methods
should be modified for bipartite problems (like users-



ads matching [54]), where similarities are defined only
for bichromatic pairs?
Also, is it possible to “translate” classic techniques
for similarity search like branch-and-bound [19], [38]
hashing [5], [51] or random projections [28] to “com-
binatorial language”? What kind of guarantees can we
prove for them using disorder inequality?

• Disorder vs. doubling. The combinatorial framework
leads to new results that were not known in other
models: subquadratic deterministic detection of near
duplicates, short certificates for being nearest neighbor,
generalized analog of Delaunay graph. Can similar
results be proven using doubling dimension?
In the other direction, it was shown recently, that a
dataset can be embedded into its doubling dimension
[2]. Does the similar statement applies for disorder?
Finally, can combinatorial and distance-based methods
be combined in some useful way? We post the follow-
ing unification challenge:

Is there a general framework for efficient solutions
to similarity problems that contains both doubling
dimension and the combinatorial approach as specific
subcases?

• Metric regularizations. When is it possible to redefine
metric on some dataset such that similarity order is
preserved while doubling dimension is decreased?

• Disorder of random sets. Compute disorder values
and more generally perform combinatorial analysis for
some modelling examples. Study randomized datasets:
(1) n random points on d-dimensional sphere, (2) n
random strings of some fixed length in σ-size alphabet
for Hamming/edit distance, (3) random texts generated
by Zipf model [39], and (4) preferential attachment
graphs with “number of joint friends” similarity.

• Lower bounds. Is it possible to prove lower bounds on
preprocessing and query complexities in some “black-
box” model of computation? Can we adapt techniques
from other negative results [12], [50], [65]?
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