Reputation Systems II Sybil Attack, BlogRank, B2Rank, EigenRumor, MailRank, TrustRunk

Yury Lifshits

Caltech

http://yury.name

Caltech CMI Seminar March 4, 2008

Outline

Ranking Blogs

4 Conclusions

1 Sybil Attack

Sybil Attack

- Graph of trust-weighted edges
- n honest nodes + adversary
- overall trust value on attack edges (honest-malicious) is limited

Sybil Attack

- Graph of trust-weighted edges
- n honest nodes + adversary
- overall trust value on attack edges (honest-malicious) is limited

Question: whether splitting adversarial node into many is beneficial for acquiring higher reputation (rank)?

Negative Result

Assume reputation scores remain the same under isomorphism. Is it sybilproof?

Negative Result

Assume reputation scores remain the same under isomorphism. Is it sybilproof?

Unfortunately, no. Attack strategy?

Negative Result

Assume reputation scores remain the same under isomorphism. Is it sybilproof?

Unfortunately, no. Attack strategy?

Answer: double the graph.

Positive Results (1/3)

General form of trust flow reputations:

$$r(x) = \max_{\mathcal{P}_{tx}} \bigoplus_{p \in \mathcal{P}_{tx}} trust(p)$$

Notation:

• t is pre-trusted node

• \mathcal{P}_{xy} is a family of disjoint paths from t to x

Positive Results (2/3)

Assumptions:

- Extending path nonincreases the trust(p)
- and trust are monotone to number of paths and edges values, respectively
- Splitting a path into two does not increase
 value

Positive Results (2/3)

Assumptions:

- Extending path nonincreases the trust(p)
- and trust are monotone to number of paths and edges values, respectively
- Splitting a path into two does not increase
 Output
 Outp
- $\bigoplus = \max$

Positive Results (3/3)

Under assumptions (1-3) sybil attack does not increase adversary's reputation

Positive Results (3/3)

Under assumptions (1-3) sybil attack does not increase adversary's reputation

Under assumptions (1-4) sybil attack does not increase adversary's rank

Under assumptions (1-3) sybil attack does not increase adversary's reputation

Under assumptions (1-4) sybil attack does not increase adversary's rank

Proof?

SybilGuard (1/2)

- Assume number of attack edges is $A = o(\sqrt{n}/\log n)$
- System is distributed, honest nodes follow the same protocol
- Can an honest node t identify (w.h.p.)
 2A + 1 nodes in such a way that at most A of them are powered by adversary?

SybilGuard (2/2)

- For every node fix a bijective mapping from in-edges to out-edges
- Take a walk from t of length at most $\sqrt{n} \log n$ using bijection routing
- At some point make a random switch, than continue another √n log n steps using backwalk routing
- Report a point. Repeat, until 2A + 1 points are collected

SybilGuard (2/2)

- For every node fix a bijective mapping from in-edges to out-edges
- Take a walk from t of length at most $\sqrt{n} \log n$ using bijection routing
- At some point make a random switch, than continue another √n log n steps using backwalk routing
- Report a point. Repeat, until 2A + 1 points are collected

Claim

w.h.p. at most *A* reported nodes are malicious

2 Ranking Blogs

Ranking Blogs: Factors

- Entities: blogs, posts, communities, comments, brand names, external websites
- Frineds, blogroll, subscriptions, hyperlinks, visitors, clicks, votes
- Time
- Tags

Any ideas how to rank blogs?

Any ideas how to rank blogs?

Why not just PageRank?

Any ideas how to rank blogs?

Why not just PageRank? Wait a minute, for which graph?

Any ideas how to rank blogs?

Why not just PageRank?

Wait a minute, for which graph? Linked blogs:

- Hyperlinks, blogrolls
- Common commentors/authors, tags, co-references to news

B2Rank

$B2Rank(x) = BlogReputation \times PostQuality$

B2Rank

$B2Rank(x) = BlogReputation \times PostQuality$

BlogReputation is computed in PageRank style for blogroll graph with one change:

 Blogroll links are weighted by activity level (frequency of blogging and commenting)

B2Rank

$B2Rank(x) = BlogReputation \times PostQuality$

BlogReputation is computed in PageRank style for blogroll graph with one change:

 Blogroll links are weighted by activity level (frequency of blogging and commenting)

PostQuality is average for PageRank-style score of blog posts

 Post-to-post links are weighted by referring post activity and time difference

EigenRumor (1/2)

Picture from "The EigenRumor Algorithm for Ranking Blogs" paper

EigenRumor (2/2)

Notation:

- \bar{r} : reputation score for posts
- \bar{a}, \bar{h} : authority and hub scores for bloggers
- *P*, *E*: provision and evaluation matrices

EigenRumor (2/2)

Notation:

- \bar{r} : reputation score for posts
- \bar{a}, \bar{h} : authority and hub scores for bloggers
- *P*, *E*: provision and evaluation matrices

$$\begin{split} \bar{r} &= \alpha P^T \bar{a} + (1 - \alpha) E^T \bar{h} \\ \bar{a} &= P \bar{r}, \quad \bar{h} = E \bar{r} \end{split}$$

EigenRumor (2/2)

Notation:

- \bar{r} : reputation score for posts
- \bar{a}, \bar{h} : authority and hub scores for bloggers
- *P*, *E*: provision and evaluation matrices

 $ar{r} = lpha P^T ar{a} + (1 - lpha) E^T ar{h} \ ar{a} = P ar{r}, \quad ar{h} = E ar{r}$

Solution: iterative algorithm for \bar{r} : $\bar{r} = (\alpha P^T P + (1 - \alpha) E^T E) \bar{r}$

3

Reputations For Fighting Spam

Hyperlink graph

- Hyperlink graph
- Pre-trusted nodes

- Hyperlink graph
- Pre-trusted nodes
- Spam nodes

- Hyperlink graph
- Pre-trusted nodes
- Spam nodes
- Reputation propagates in a forward manner

- Hyperlink graph
- Pre-trusted nodes
- Spam nodes
- Reputation propagates in a forward manner
- Spam score propagates backwards

- Hyperlink graph
- Pre-trusted nodes
- Spam nodes
- Reputation propagates in a forward manner
- Spam score propagates backwards
- Compute spam scores a-la PageRank

- Hyperlink graph
- Pre-trusted nodes
- Spam nodes
- Reputation propagates in a forward manner
- Spam score propagates backwards
- Compute spam scores a-la PageRank
- Reweight hyperlink graph and pre-trusted nodes

- Hyperlink graph
- Pre-trusted nodes
- Spam nodes
- Reputation propagates in a forward manner
- Spam score propagates backwards
- Compute spam scores a-la PageRank
- Reweight hyperlink graph and pre-trusted nodes
- Compute reputations a-la PageRank

4 Conclusions

Challenges

- Measurable objectives?
- Model for input data?
- Dynamic aspects of reputations? Digg-style ranking?
- Price of attack?
- Ranking in social networks?
- Ranking in RDF data?
- Billion dollar question: how to avoid arms race?

References

K. Fujimura, T. Inoue, M. Sugisaki

The EigenRumor Algorithm for Ranking Blogs

A. Kritikopoulos, M. Sideri, I. Varlamis

BlogRank: ranking weblogs based on connectivity and similarity features

M.A. Tayebi, S.M. Hashemi, A. Mohades

B2Rank: An Algorithm for Ranking Blogs Based on Behavioral Features

- A. Cheng, E. Friedman Sybilproof reputation mechanisms
- H. Yu, M. Kaminsky, P.B. Gibbons, A, Flaxman SybilGuard: defending against sybil attacks via social networks
 - P.A. Chirita, J. Diederich, W. Nejdl MailRank: using ranking for spam detection
- Z. Gyongyi, H. Garcia-Molina, J. Pedersen Combating web spam with TrustRank

M. Dalal

Spam and popularity ratings for combating link spam

http://yury.name
http://yury.name/reputation.html
Ongoing project: http://businessconsumer.net

http://yury.name
http://yury.name/reputation.html
Ongoing project: http://businessconsumer.net

Thanks for your attention! Questions?