Program Obfuscation and Related Topics
Applications and Perspectives

Yury Lifshits

yura@logic.pdmi.ras.ru

Faculty of Mathematics and Mechanics
Saint-Petersburg State University

Spring 2005 – Intel
Outline

Obfuscation Concept

Perspective Directions

State of the Art
Talk Objectives

- Short and general overview of applications
- Short and general overview of results
- Search for topic with common interest
Main Concept

So, what is Obfuscator?

"clear" "unreadable"

- Functionality preserving
- Increase of code size, time & space requirements are restricted (usually by constant factor)
- Obfuscated program is not readable (not understandable)
Some facts:

- First mention — famous Diffie-Hellman paper (1976)
- More than 30 publications, several Ph.D. theses
- More than 25 Java obfuscators
- International Contests (C, Perl, PostScript, Ruby)
- Famous Universities involved (Weizmann, Stanford, Princeton, MSU)
- Famous companies involved (Sun, Microsoft)
General Source-to-Source Obfuscators

Observations:

⇒ Long list of tricks (layout, data, control flow)
⇒ Commercial potential
⇒ No guaranteed security
⇒ Static analysis of obfuscated program is computationally hard
⇒ Arms race against hackers
Low-level Obfuscators

- Making exact disassembling hard
- Making exact decompilation hard

Same story — arms race with adversary:

New protection \Rightarrow new analysis \Rightarrow new protection \ldots
Good recent news:

- Some promising solutions are already presented (XOM, 2004)
- Model: memory is accessible to adversary, processor is not
- To achieve the best level of security program should be obfuscated in special way
- Security analysis is not ready yet
New threat: bookmark insertion during chip manufacturing

Solution: chip obfuscation

Most appropriate level for obfuscation usage
[Zakharov, 2005] — RTL model of chip
Specific Protection

What type of attacks are we going to resist?

⇒ Key’s extraction
⇒ Modification:
 • Add
 • Delete
 • Edit
 • Reuse
⇒ Vulnerability search
⇒ Bookmarks insertion
⇒ Program state attack
More Applications

Other applications?

- Mobile agents protection
- White Box Encoding and DRM applications
- Digital watermarks
- Quality and protection analysis
Most significant results to the moment:

➢ A lot of obfuscators. Static analysis is now really hard
➢ Definition of “ideal” security
➢ Parameter hiding based on classical cryptography
➢ Hardware solutions (in theory?)
➢ Huge list of tricks
Our Contribution

What have our SPRINT Lab group already done?

- Theoretical models for:
 - Program Slowdown
 - Function Sharing
 - Fully Encrypted Computation
 - Condition-protection

- Hardware methods survey

- Low-level obfuscation survey (+ some original tricks)
Main questions for obfuscation theory:

- Find all obfuscatable programs?
- List of modelling examples which require obfuscation (benchmarks)?
- Models for specific attacks?
- Hardware models?
- Quality of obfuscation?
- Power of deobfuscation (program understanding)?
What Do We Learn Today?

- Obfuscating transformations should make programs harder to understand, analyse and modify
- There is a long list of threats based on program understanding
- There is no universal protection
- Hope for new protection methods

Thanks for your attention! Questions?
Viruses
Obfuscation on interpretation level
For Further Reading

Yury Lifshits. *Lecture Notes on Program Obfuscation*
http://cs-seminar.spb.ru/, “Reports” section

Yury Lifshits
Program Obfuscation. A survey