Combinatorial Approach to Data Mining

Yury Lifshits
Caltech
http://yury.name

MIT, 29 November 2007

Based on joint work with Navin Goyal, Benjamin Hoffmann, Dirk Nowotka, Hinrich Schütze and Shengyu Zhang
Nearest neighbors
Preprocess a set S such that given any q
the closest point in S to q can be found quickly

Near-duplicates
Find all pairs of objects with distance
below some threshold in subquadratic time

Navigability design
Construct a graph such that local routing
is leading to target in logarithmic number of steps

Clustering
Split a set to k parts minimizing in-cluster distances
Nearest neighbors
Preprocess a set S such that given any q
the closest point in S to q can be found quickly

Near-duplicates
Find all pairs of objects with distance
below some threshold in subquadratic time

Navigability design
Construct a graph such that local routing
is leading to target in logarithmic number of steps

Clustering
Split a set to k parts minimizing in-cluster distances

Today: distances are not given,
triangle inequality is not satisfied
Outline

1. Combinatorial Framework
2. Results: New Algorithms
3. One Proof: Visibility Graph
4. Open Problems
1

Combinatorial Framework
Comparison Oracle

- Dataset \(p_1, \ldots, p_n \)
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

 Who is closer to \(A \): \(B \) or \(C \)?
Disorder Inequality

Sort all objects by their similarity to p:

$$\text{rank}_p(r)$$

$$\text{rank}_p(s)$$
Disorder Inequality

Sort all objects by their similarity to p:

Then by similarity to r:

$$\forall p, r, s: \text{rank}_p(r) \leq \text{D} \left(\text{rank}_p(r) + \text{rank}_p(s) \right)$$
Disorder Inequality

Sort all objects by their similarity to p:

Then by similarity to r:

Dataset has disorder D if

$$\forall p, r, s : \quad rank_r(s) \leq D(rank_p(r) + rank_p(s))$$
Combinatorial Framework

\[= \]

Comparison oracle
Who is closer to A: B or C?

+

Disorder inequality
\[\text{rank}_r(s) \leq D(\text{rank}_p(r) + \text{rank}_p(s)) \]
Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to “local density” of a dataset
Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to “local density” of a dataset

Limitation: worst-case form of disorder inequality
Combinatorial Ball

\[B(x, r) = \{ y : \text{rank}_x(y) < r \} \]

In other words, it is a subset of dataset \(S \): the object \(x \) itself and \(r - 1 \) its nearest neighbors.

\[B(x, 10) \]
A subset $R \subseteq S$ is called a **combinatorial r-net** iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R, \text{ s.t. } \text{rank}_x(y) < r.$

Separation: $\forall x_i, x_j \in R, \text{ rank}_x(x_j) \geq r \text{ OR rank}_x(x_i) \geq r.$
Combinatorial Net

A subset \(R \subseteq S \) is called a **combinatorial \(r \)-net** iff the following two properties holds:

Covering: \(\forall y \in S, \exists x \in R, \text{ s.t. } \operatorname{rank}_x(y) < r \).

Separation: \(\forall x_i, x_j \in R, \operatorname{rank}_{x_i}(x_j) \geq r \text{ OR } \operatorname{rank}_{x_j}(x_i) \geq r \).

How to construct a combinatorial net?
What upper bound on its size can we guarantee?
Disorder vs. Others

- If expansion rate is c, disorder constant is at most c^2
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of “doubling effect”
Results:
Combinatorial Algorithms
Combinatorial nets:
For every $0 \leq i \leq \log n$, construct a $\frac{n}{2^i}$-net
Basic Data Structure

Combinatorial nets:
For every $0 \leq i \leq \log n$, construct a $\frac{n}{2^i}$-net

Pointers, pointers, pointers:
- **Direct & inverted indices:** links between centers and members of their balls
- **Cousin links:** for every center keep pointers to close centers on the same level
- **Navigation links:** for every center keep pointers to close centers on the next level
Theorem

Combinatorial nets can be constructed in $O(D^7 n \log^2 n)$ time
Nearest Neighbor Search

Assume $S \cup \{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

- **Preprocessing:** $O(D^7 n \log^2 n)$
- **Search:** $O(D^4 \log n)$
Nearest Neighbor Search

Assume $S \cup \{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

- **Preprocessing**: $\mathcal{O}(D^7 n \log^2 n)$
- **Search**: $\mathcal{O}(D^4 \log n)$

Variations:

- $\mathcal{O}(n)$ size of data structure, still $\text{poly}(D) \log n$ search
- Randomized algorithm, $\mathcal{O}(D \log n)$ search
Navigability Design

Local routing in a graph:
Given target description and the current node p, a message is forwarded via one of the out-going edges from p.

Design task:
Given a collection of points $S = \{p_1, \ldots, p_n\}$ construct a low-degree graph and rules for local decisions such that given a start $p \in S$ and a target q the nearest neighbor of q in S can be reached in a small number of steps.
Navigability Design

Local routing in a graph:
Given target description and the current node \(p \)
a message is forwarded via one of the out-going edges from \(p \)

Design task:
Given a collection of points \(S = \{ p_1, \ldots, p_n \} \)
construct a low-degree graph and rules for local decisions
such that given a start \(p \in S \) and a target \(q \)
the nearest neighbor of \(q \) in \(S \)
can be reached in a small number of steps
Theorem

Any dataset \(S \) has a **visibility graph**:

- \(\text{poly}(D)n \log^2 n \) construction time
- \(\mathcal{O}(D^4 \log n) \) out-degrees
- Naïve greedy routing **deterministically** reaches exact nearest neighbor of \(q \) in at most \(\log n \) steps
Near-Duplicates

Assume, comparison oracle can also tell us whether $\sigma(x, y) > T$ for some similarity threshold T

Theorem

All pairs with over-T similarity can be found deterministically in time

$$\text{poly}(D)(n \log^2 n + |\text{Output}|)$$
Clustering

Combinatorial objective function for k-clustering:

Minimize $\sum_{i \in [k]} \sum_{x, y \in C_i} rank_x(y)$
Clustering

Combinatorial objective function for k-clustering:

$$\text{Minimize} \quad \sum_{i \in [k]} \sum_{x, y \in C_i} \text{rank}_x(y)$$

Theorem

A $32D^3$-approximate clustering can be constructed in time $\text{poly}(D)n \log^2 n$
One Proof: Visibility Graph
Problem Statement

Input:
Dataset \(S = \{p_1, \ldots, p_n\} \)
Represented by comparison oracle
Having disorder constant \(D \)
Problem Statement

Input:
Dataset $S = \{p_1, \ldots, p_n\}$
Represented by comparison oracle
Having disorder constant D

Design Task:
Connect every object with few others
Set local rules for routing
Problem Statement

Input:
Dataset \(S = \{p_1, \ldots, p_n\} \)
Represented by comparison oracle
Having disorder constant \(D \)

Design Task:
Connect every object with few others
Set local rules for routing

Routing Requirement: Given a target point \(q \) and a starting point \(p \in S \) the nearest neighbor of \(q \) in \(S \) should be reached by a few steps in the graph
Greedy Routing

1. Use oracle to compare distances to q from current point p and from all its neighbors in the graph.

2. If p is not the closest one, move to the one which is the closest.

3. Otherwise, STOP and return p.

Also known as local search, hill climbing etc.
Greedy Routing

1. Use oracle to compare distances to q from current point p and from all its neighbors in the graph.

2. If p is not the closest one, move to the one which is the closest.

3. Otherwise, STOP and return p.

Also known as local search, hill climbing etc.
Definition of Visibility

A center c_i in the $\frac{n}{2^i}$-net is visible from some object p iff

$$\text{rank}_p(c_i) \leq 3D^2 \frac{n}{2^i}$$
Definition of Visibility

A center c_i in the $\frac{n}{2^i}$-net is visible from some object p iff

$$\text{rank}_p(c_i) \leq 3D^2 \frac{n}{2^i}$$

Interpretation: the farther you are the larger radius you need to be visible
Definition of Visibility

A center c_i in the $\frac{n}{2^i}$-net is **visible** from some object p iff

$$\text{rank}_p(c_i) \leq 3D^2 \frac{n}{2^i}$$

Interpretation: the farther you are the larger radius you need to be visible
Analysis

Three claims:

- Out-degrees are $O(D^4 \log n)$
- After i steps we reach a point that is at least as close to q as the best center in $\frac{n}{2^i}$-net
- Visibility graph can be constructed in $poly(D)n \log^2 n$ time
Bound on Degrees

Connecting p with centers of r-net:

- By construction, centers have ranks at most $3D^2r$ to p
- There are disjoint $\frac{r}{2D}$ balls around these centers
- Members of these disjoint balls have $O(D^3)r$ rank to p
- Thus, there are at most $O(D^4)$ such centers
After i steps we reach a point that is at least as close to q as the best point in $\frac{n}{2^i}$-net

Inductive proof. From i to $i+1$:

- For the best center in i-th level $\text{rank}_q(c_i^*) \leq Dr_i$.

Similarly, c_{i+1}^* satisfies $\text{rank}_q(c_{i+1}^*) \leq \frac{Dr_i}{2}$.
After i steps we reach a point that is at least as close to q as the best point in $\frac{n}{2^i}$-net

Inductive proof. From i to $i + 1$:

- For the best center in i-th level $\text{rank}_q(c_i^*) \leq Dr_i$.

 Similarly, c_{i+1}^* satisfies $\text{rank}_q(c_{i+1}^*) \leq \frac{Dr_i}{2}$

- From inductive conjecture: after i steps in a greedy walk the current point $p^{(i)}$ also has $\text{rank}_q(p^{(i)}) \leq Dr_i$
Fast Convergence

After i steps we reach a point that is at least as close to q as the best point in $\frac{n}{2^i}$-net

Inductive proof. From i to $i+1$:

1. For the best center in i-th level $\text{rank}_q(c_i^*) \leq Dr_i$. Similarly, c_{i+1}^* satisfies $\text{rank}_q(c_{i+1}^*) \leq \frac{Dr_i}{2}$

2. From inductive conjecture: after i steps in a greedy walk the current point $p^{(i)}$ also has $\text{rank}_q(p^{(i)}) \leq Dr_i$

3. By disorder inequality $p^{(i)}$ is connected to c_{i+1}^*

Therefore $p^{(i+1)}$ is at least as good as c_{i+1}^* is
Directions for Further Research

- Other problems in combinatorial framework:
 - Low-distortion embeddings
 - Closest pairs
 - Community discovery
 - Linear arrangement
 - Distance labelling
 - Dimensionality reduction

- What if disorder inequality has exceptions, but holds in average?
- Insertions, deletions, changing metric
- Metric regularizations
- Experiments & implementation
Call for Feedback

- What do you like the most in these results?
- What is the most important question for further studies?
- Relevant literature?

Another talk: YL, "Open Problems TO GO"
Friday Nov 30, 4pm, 56-154, MIT Theory Reading Group
Call for Feedback

- What do you like the most in these results?
- What is the most important question for further studies?
- Relevant literature?
- Are you interested in further discussions? I am around this evening and the whole Friday.
Call for Feedback

- What do you like the most in these results?
- What is the most important question for further studies?
- Relevant literature?
- Are you interested in further discussions? I am around this evening and the whole Friday.

Another talk: YL, “Open Problems TO GO”
Friday Nov 30, 4pm, 56-154, MIT Theory Reading Group
http://yury.name

http://simsearch.yury.name
Tutorial, bibliography, people, links, open problems

Yury Lifshits and Shengyu Zhang
Similarity Search via Combinatorial Nets

Navin Goyal, Yury Lifshits, Hinrich Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka
Maximal Intersection Queries in Randomized Graph Models
Summary

- **Combinatorial framework:** comparison oracle + disorder inequality
- **Near-linear construction** of combinatorial nets
- Nearest neighbor search in **almost logarithmic** time
- **Deterministic** detection of near-duplicates in **subquadratic** time
- **Visibility graph:** small degrees and deterministic convergence in $\log n$ steps
Summary

- **Combinatorial framework:** comparison oracle + disorder inequality
- **Near-linear construction** of combinatorial nets
- Nearest neighbor search in *almost logarithmic* time
- **Deterministic** detection of near-duplicates in subquadratic time
- **Visibility graph:** small degrees and deterministic convergence in $\log n$ steps

Thanks for your attention!
Questions?