#### **Advertising Engines**

A Guide to Web Research: Lecture 1

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

Stuttgart, Spring 2007



#### Microsoft® adCenter





new algorithmic problems new models and notions

## Talk Objective

#### Industrial solutions

- Google AdWords
- Google AdSense
- Yahoo! SearchMarketing
- Microsoft adCenter
- Amazon recommendations
- Coming soon: personalized ads for webmail, social networks, blogging platforms, phones, computer games, supermarket bills etc.

## Talk Objective

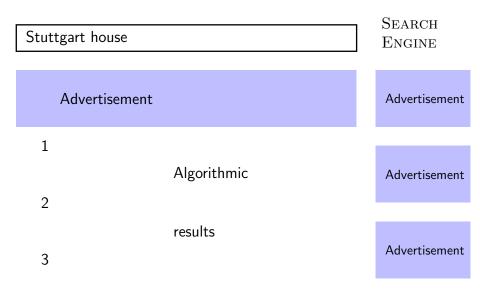
#### Industrial solutions

- Google AdWords
- Google AdSense
- Yahoo! SearchMarketing
- Microsoft adCenter
- Amazon recommendations
- Coming soon: personalized ads for webmail, social networks, blogging platforms, phones, computer games, supermarket bills etc.

#### Today we show

- (1) single model for distributing personalized ads
- (2) open algorithmic problems motivated by such systems

#### Outline


- Architecture of Advertising Engines
  - Component 1: Event
  - Component 2: Advertiser
  - Component 3: Advertising Engine

#### Outline

- Architecture of Advertising Engines
  - Component 1: Event
  - Component 2: Advertiser
  - Component 3: Advertising Engine
- Algorithmic Challenges
  - Target optimization
  - Click Volume
  - AdRank Computing
  - Ad Coverings

# Part I: Architecture of Advertising Engines

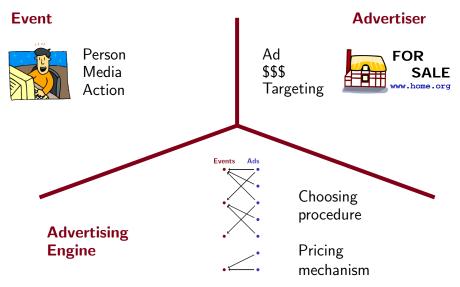
### Example: Sponsored Search



#### Example: Context Ads

STUTTGART ESTATE AGENCY

Advertisement


Main

Advertisement

content

 ${\sf Advertisement}$ 

### Three Components: Event, Advertiser, Engine



#### Component 1: Event



#### **Collect all available information:**

- Person: What do we know about him/her?
  - Age, geographic location, previous actions, interests etc
- Media: What is situated around the ad placement?
  - Content and typical audience of website, tv program, newspaper
- Action: Current relations between person and media?
  - Current search query, purchasing a book, signing up to a service

### Component 2: Advertiser



#### Setting new campaign:

- Ad: What will be displayed?
  - Text, image, video, hyperlink, phone number, advertiser's website
- \$\$\$: Size of campaign?
  - Monthly/daily budget, maximal admissible price (bid) for click/impression
- Targeting: Who is target audience?
  - Location, specific query keywords, category of landing page

Targeting in general: any subset of event space  $P \times M \times A$ 

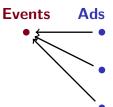
#### Basic routine of advertising engine:

Get all available info about current event

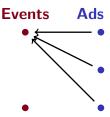
- Get all available info about current event
- Yeep only ads that include this event to their target

- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event

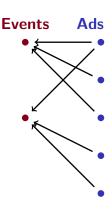
- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones


- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)

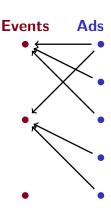
- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)


|     |                                                                   | Events | Ads |
|-----|-------------------------------------------------------------------|--------|-----|
| Bas | ic routine of advertising engine:                                 |        | •   |
| 1   | Get all available info about current event                        |        |     |
| 2   | Keep only ads that include this event to their target             |        | •   |
| 3   | Rank ads according to their bids and their relevance to the event |        | •   |
| 4   | Display (several) best ones                                       |        |     |
| 6   | In case of click compute discount (actual price for advertiser)   |        | •   |

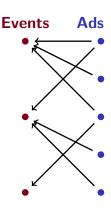
|                                      |                                                                   | Events<br>• | Ads |
|--------------------------------------|-------------------------------------------------------------------|-------------|-----|
| Basic routine of advertising engine: |                                                                   |             | •   |
| 1                                    | Get all available info about current event                        |             |     |
| 2                                    | Keep only ads that include this event to their target             |             | •   |
| 3                                    | Rank ads according to their bids and their relevance to the event |             | •   |
| 4                                    | Display (several) best ones                                       |             |     |
| 6                                    | In case of click compute discount (actual price for advertiser)   |             | •   |


- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)

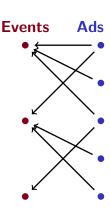



- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)

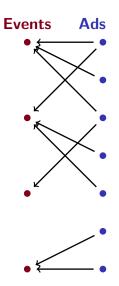



- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)




- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)




- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)



- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)



- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Display (several) best ones
- In case of click compute discount (actual price for advertiser)



- User
  - Maintain privacy
  - Receive only relevant ads

- User
  - Maintain privacy
  - Receive only relevant ads
- Advertiser
  - Cheap clicks
  - Get "relevant" clicks (high conversion rate)
  - Transparent pricing and targeting mechanisms

- User
  - Maintain privacy
  - Receive only relevant ads
- Advertiser
  - Cheap clicks
  - Get "relevant" clicks (high conversion rate)
  - Transparent pricing and targeting mechanisms
- Advertising Engine
  - Organize enough relevant clicks for any budget and any target
  - Keep prices high
  - Keep users/advertisers happy

- User
  - Maintain privacy
  - Receive only relevant ads
- Advertiser
  - Cheap clicks
  - Get "relevant" clicks (high conversion rate)
  - Transparent pricing and targeting mechanisms
- Advertising Engine
  - Organize enough relevant clicks for any budget and any target
  - Keep prices high
  - Keep users/advertisers happy

#### More objectives?

# Part II: Algorithmic Challenges

#### Part II: Algorithmic Challenges

**Disclaimer:** my style is

- At first, think independently (e.g. pose new problems)
- Only after that look into literature

Hence, the following problems might be already known and heavily studied!

# Target optimization (1/4)

### Informally

Advertiser sets target audience. Advertising engine should help:

- Some potentially interested people are missed
- Exclude people who will be offended by this ad
- Proper setting of target audience is difficult
- Advertising engine knows much more about event space

# Target optimization (2/4)

### Formalization

Events are vectors

Advertiser provides some **sample** events  $S = \{e_1, \dots, e_k\}$  from the target

Advertising engine produces an effective membership procedure for  ${\bf optimized\ target\ } \bar{S}$ 

# Target optimization (2/4)

### Formalization

Events are vectors

Advertiser provides some **sample** events  $S = \{e_1, \dots, e_k\}$  from the target

Advertising engine produces an effective membership procedure for **optimized target**  $\bar{S}$ 

How to define **optimized target**?

# Target optimization (3/4)

Solution

Let B(e, r) be the ball in event space with center e and radius r

New target = 
$$\bigcup_k B(e_k, r)$$

## Target optimization (3/4)

Solution

Let B(e, r) be the ball in event space with center e and radius r

New target = 
$$\bigcup_k B(e_k, r)$$

- **1** Find nearest representative  $e_i \in S$
- ② Check whether  $Dist(e_{new}, e_i) < r$

Let B(e, r) be the ball in event space with center e and radius r

New target = 
$$\bigcup_k B(e_k, r)$$

- Find nearest representative  $e_i \in S$
- 2 Check whether  $Dist(e_{new}, e_i) < r$





Let B(e, r) be the ball in event space with center e and radius r

New target = 
$$\bigcup_k B(e_k, r)$$

- Find nearest representative  $e_i \in S$
- 2 Check whether  $Dist(e_{new}, e_i) < r$

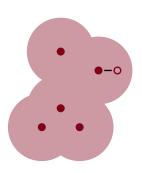


Let B(e, r) be the ball in event space with center e and radius r

New target = 
$$\bigcup_k B(e_k, r)$$

- Find nearest representative  $e_i \in S$
- 2 Check whether  $Dist(e_{new}, e_i) < r$




# Target optimization (3/4)

Solution

Let B(e, r) be the ball in event space with center e and radius r

New target = 
$$\bigcup_k B(e_k, r)$$

- **1** Find nearest representative  $e_i \in S$
- 2 Check whether  $Dist(e_{new}, e_i) < r$



# Target optimization (4/4) Questions Around

- Other definitions for optimized target?
- Exploiting historical information for target optimization
- Target construction based on advertisement content

#### Informally

Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad

### Informally

Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad

- Understand how much can we sell
- Evaluate the effectiveness of current engines
- The first step towards recognizing interested audience
- Use different strategies for (supply<demand) and (supply>demand)

## Informally

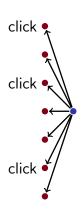
Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad

- Understand how much can we sell
- Evaluate the effectiveness of current engines
- The first step towards recognizing interested audience
- Use different strategies for (supply<demand) and (supply>demand)

- •
- •
- •
- •

## Informally

Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad


- Understand how much can we sell
- Evaluate the effectiveness of current engines
- The first step towards recognizing interested audience
- Use different strategies for (supply<demand) and (supply>demand)



## Informally

Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad

- Understand how much can we sell
- Evaluate the effectiveness of current engines
- The first step towards recognizing interested audience
- Use different strategies for (supply<demand) and (supply>demand)



Take daily history event-ad-?click:

$$(e_1, a_1, b_1) \dots (e_n, a_n, b_n)$$

Use similarity-between-ads function S for computing click volume V:

$$V(a_{new}) = \sum S(a_{new}, a_i) \cdot b_i$$

#### Basic Formula

Take daily history event-ad-?click:

$$(e_1, a_1, b_1) \dots (e_n, a_n, b_n)$$

Use similarity-between-ads function S for computing click volume V:

$$V(a_{new}) = \sum S(a_{new}, a_i) \cdot b_i$$

Any comments/objections?

## Click Volume (3/4) Corrected Formula

Problem: click volume is underestimated since not all chosen ads are similar to  $a_{new}$ 

#### Corrected Formula

Problem: click volume is underestimated since not all chosen ads are similar to  $a_{new}$ 

First step: prediction of click-through rate for a given event-ad pair

$$CTR(e, a_{new}) = \frac{\sum_{e_i = e} S(a_i, a_{new})b_i}{\sum_{e_i = e} S(a_i, a_{new})}$$

### Corrected Formula

Problem: click volume is underestimated since not all chosen ads are similar to  $a_{new}$ 

First step: prediction of click-through rate for a given event-ad pair

$$CTR(e, a_{new}) = \frac{\sum_{e_i=e} S(a_i, a_{new})b_i}{\sum_{e_i=e} S(a_i, a_{new})}$$

Second step: using click rates

$$V(a_{new}) = \sum_{1 \le i \le n} CTR(e_i, a_{new})$$

#### Questions Around

- Computing ad volume (the amount of advertisements that can get positive response at the given event)
- Fast algorithm for predicting click volume for all ads in the system
- Exploiting metric inside event space

Input: event  $e_{new}$ , set of all ads A. Choosing-ads principles:

- Take the most content-relevant
- Take the ones with best click-through rate
- Take ads with maximal bids

$$AdRank(e_{new}, a) = Bid(a) \cdot (ContRel(e_{new}, a) + CTR(e_{new}, a))$$

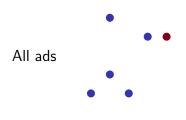
## AdRank Computing (2/2) Questions Around

Actually, finding content-closest ads to the given input is just the nearest neighbor problem. **We need:** 

- Data structure for A for fast computing of best AdRank(e<sub>new</sub>, a) values
- Accurate and fast prediction for  $CTR(e_{new}, a)$

## AdRank Computing (2/2) Questions Around

Actually, finding content-closest ads to the given input is just the nearest neighbor problem. We need:

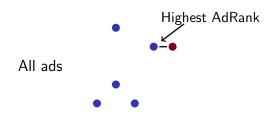

- Data structure for A for fast computing of best AdRank(e<sub>new</sub>, a) values
- Accurate and fast prediction for  $CTR(e_{new}, a)$

All ads

## AdRank Computing (2/2) Questions Around

Actually, finding content-closest ads to the given input is just the nearest neighbor problem. We need:

- Data structure for A for fast computing of best AdRank(e<sub>new</sub>, a) values
- Accurate and fast prediction for  $CTR(e_{new}, a)$




## AdRank Computing (2/2) Que

### Questions Around

Actually, finding content-closest ads to the given input is just the nearest neighbor problem. We need:

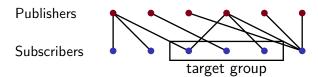
- Data structure for A for fast computing of best AdRank(e<sub>new</sub>, a) values
- Accurate and fast prediction for  $CTR(e_{new}, a)$



### Ad Coverings

## Informally

Consider any **publishers-subscribers** graph (say, RSS feeds):

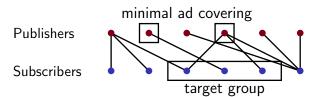

- What is the minimal amount of placements to cover all (target) audience?
- Given fixed amount of placements how many subscribers can we cover twice?

## Ad Coverings

## Informally

Consider any publishers-subscribers graph (say, RSS feeds):

- What is the minimal amount of placements to cover all (target) audience?
- Given fixed amount of placements how many subscribers can we cover twice?




## Ad Coverings

### Informally

Consider any publishers-subscribers graph (say, RSS feeds):

- What is the minimal amount of placements to cover all (target) audience?
- Given fixed amount of placements how many subscribers can we cover twice?



## Other Directions in Advertising Engines

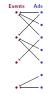
- Optimal ad distribution in case when interested audience is larger than budget
- Machine learning for advertising engines
- Weighted targeting (some events are preferable to others)
- Advertising engines for social networks
- Auction design for sponsored search
- Click fraud

## Call for participation

Know a relevant reference?

Have an idea?

Find a mistake?


#### Solved one of these problems?

- Knock to my office 1.156
- Write to me yura@logic.pdmi.ras.ru
- Join our informal discussions
- Participate in writing roadmap-paper

## Summary

#### Three components:



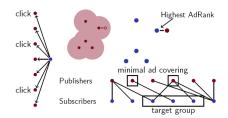




## Summary

#### Three components:








# FOR SALE

www.home.org

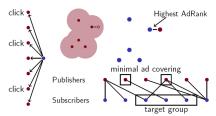
#### Four problems:



## Summary

#### Three components:








# FOR SALE

www.home.org

#### Four problems:



Vielen Dank für Ihre Aufmerksamkeit! Fragen?

#### Sources

#### **Course homepage**

http://logic.pdmi.ras.ru/~yura/webguide.html



Daniel C. Fain and Jan O. Pedersen

Sponsored Search: a Brief History

http://www.bus.ualberta.ca/kasdemir/ssa2/fain\_pedersen.PDF



Alexander Tuzhilin

The Lanes Gifts v. Google Report
http://googleblog.blogspot.com/pdf/Tuzhilin\_Report.pdf



Moira Regelson and Daniel C. Fain

Predicting ClickThrough Rate Using Keyword Clusters http://www.bus.ualberta.ca/kasdemir/ssa2/regelson\_fain.pdf



Juan Feng, Hemant K. Bhargava and David M. Pennock

Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms

http://research.yahoo.com/node/338/2371



Panel Discussion at SSA2

Models for Sponsored Search: What are the right questions?

http://research.microsoft.com/~hartline/papers/panel-SSA-06.pdf