Advertising Engines
A Guide to Web Research: Lecture 1

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

Stuttgart, Spring 2007
Talk Objective

Industrial solutions
- Google AdWords
- Google AdSense
- Yahoo! SearchMarketing
- Microsoft adCenter
- Amazon recommendations

Coming soon: personalized ads for webmail, social networks, blogging platforms, phones, computer games, supermarket bills etc.

Today we show
(1) single model for distributing personalized ads
(2) open algorithmic problems motivated by such systems

Outline

1 Architecture of Advertising Engines
 - Component 1: Event
 - Component 2: Advertiser
 - Component 3: Advertising Engine

2 Algorithmic Challenges
 - Target optimization
 - Click Volume
 - AdRank Computing
 - Ad Coverings
Part I: Architecture of Advertising Engines

Example: Sponsored Search

Stuttgart house

Search Engine

Advertisement

1
Algorithmic

2
results

3

Advertisement

Advertisement

Advertisement

Advertisement
Example: Context Ads

Stuttgart Estate Agency

Main content

Three Components: Event, Advertiser, Engine

Event

Person
Media
Action

Advertiser

Ad
$$$
Targeting

FOR SALE
www.home.org

Advertising Engine

Choosing procedure
Pricing mechanism

Choosing procedure
Pricing mechanism
Component 1: Event

Collect all available information:

- Person: What do we know about him/her?
 - Age, geographic location, previous actions, interests etc
- Media: What is situated around the ad placement?
 - Content and typical audience of website, tv program, newspaper
- Action: Current relations between person and media?
 - Current search query, purchasing a book, signing up to a service

Component 2: Advertiser

Setting new campaign:

- Ad: What will be displayed?
 - Text, image, video, hyperlink, phone number, advertiser’s website
- $$$: Size of campaign?
 - Monthly/daily budget, maximal admissible price (bid) for click/impression
- Targeting: Who is target audience?
 - Location, specific query keywords, category of landing page

Targeting in general: any subset of event space $P \times M \times A$
Component 3: Advertising Engine

Basic routine of advertising engine:
1. Get all available info about current event
2. Keep only ads that include this event to their target
3. Rank ads according to their bids and their relevance to the event
4. Display (several) best ones
5. In case of click compute discount (actual price for advertiser)

Objectives

- User
 - Maintain privacy
 - Receive only relevant ads

- Advertiser
 - Cheap clicks
 - Get “relevant” clicks (high conversion rate)
 - Transparent pricing and targeting mechanisms

- Advertising Engine
 - Organize enough relevant clicks for any budget and any target
 - Keep prices high
 - Keep users/advertisers happy

More objectives?
Part II: Algorithmic Challenges

Disclaimer: my style is
1. At first, think independently (e.g. pose new problems)
2. **Only after that** look into literature

Hence, the following problems might be already known and heavily studied!

Target optimization (1/4) Informally

Advertiser sets target audience. **Advertising engine should help:**

- Some potentially interested people are missed
- Exclude people who will be offended by this ad
- Proper setting of target audience is difficult
- Advertising engine knows much more about event space
Events are vectors

Advertiser provides some \textbf{sample} events \(S = \{e_1, \ldots, e_k\} \) from the target

Advertising engine produces an effective membership procedure for \textbf{optimized target} \(\tilde{S} \)

How to define \textbf{optimized target}?

Target optimization (3/4) Solution

Let \(B(e, r) \) be the ball in event space with center \(e \) and radius \(r \)

\[
\text{New target} = \bigcup_k B(e_k, r)
\]

Effective membership for \(e_{\text{new}} \):

1. Find nearest representative \(e_i \in S \)
2. Check whether \(\text{Dist}(e_{\text{new}}, e_i) < r \)
Other definitions for optimized target?
Exploiting historical information for target optimization
Target construction based on advertisement content

Click Volume (1/4) Informally

Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad

Motivation
- Understand how much can we sell
- Evaluate the effectiveness of current engines
- The first step towards recognizing interested audience
- Use different strategies for (supply < demand) and (supply > demand)
Take daily history event-ad-click:

\[(e_1, a_1, b_1) \ldots (e_n, a_n, b_n)\]

Use similarity-between-ads function \(S\) for computing click volume \(V\):

\[V(a_{new}) = \sum S(a_{new}, a_i) \cdot b_i\]

Any comments/objections?

Problem: click volume is underestimated since not all chosen ads are similar to \(a_{new}\)

First step: prediction of click-through rate for a given event-ad pair

\[CTR(e, a_{new}) = \frac{\sum_{e;=e} S(a_i, a_{new}) b_i}{\sum_{e;=e} S(a_i, a_{new})}\]

Second step: using click rates

\[V(a_{new}) = \sum_{1 \leq i \leq n} CTR(e_i, a_{new})\]
Computing ad volume (the amount of advertisements that can get positive response at the given event)

Fast algorithm for predicting click volume for all ads in the system

Exploiting metric inside event space

AdRank Computing (1/2) Informally

Input: event e_{new}, set of all ads A. **Choosing-ads principles:**

- Take the most content-relevant
- Take the ones with best click-through rate
- Take ads with maximal bids

$$\text{AdRank}(e_{\text{new}}, a) = \text{Bid}(a) \cdot (\text{ContRel}(e_{\text{new}}, a) + \text{CTR}(e_{\text{new}}, a))$$
AdRank Computing (2/2) Questions Around

Actually, finding content-closest ads to the given input is just the nearest neighbor problem. **We need:**

- Data structure for A for fast computing of best $AdRank(e_{new}, a)$ values
- Accurate and fast prediction for $CTR(e_{new}, a)$

Ad Coverings Informally

Consider any *publishers-subscribers* graph (say, RSS feeds):

- What is the minimal amount of placements to cover all (target) audience?
- Given fixed amount of placements how many subscribers can we cover twice?
Other Directions in Advertising Engines

- Optimal ad distribution in case when interested audience is larger than budget
- Machine learning for advertising engines
- Weighted targeting (some events are preferable to others)
- Advertising engines for social networks
- Auction design for sponsored search
- Click fraud

Call for participation

Know a relevant reference?

Have an idea?

Find a mistake?

Solved one of these problems?

- Knock to my office 1.156
- Write to me yura@logic.pdmi.ras.ru
- Join our informal discussions
- Participate in writing roadmap-paper
Summary

Three components:

Four problems:

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

Sources

Course homepage http://logic.pdmi.ras.ru/~yura/webguide.html

Daniel C. Fain and Jan O. Pedersen
Sponsored Search: a Brief History
http://www.bus.ualberta.ca/kasdemir/ssa2/fain_pedersen.PDF

Alexander Tuzhilin
The Lanes Gifts v. Google Report

Moira Regelson and Daniel C. Fain
Predicting ClickThrough Rate Using Keyword Clusters

Juan Feng, Hemant K. Bhargava and David M. Pennock
Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms
http://research.yahoo.com/node/338/2371

Panel Discussion at SSA2
Models for Sponsored Search: What are the right questions?
http://research.microsoft.com/~hartline/papers/panel-SSA-06.pdf