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Abstract. In this paper, we consider the decidability of two problems related to
information flow in a system with respect to some property. A flow occuis in
system if the conditional probability of the property under some partismwbs
tion differs from the a priori probability of that property. For systemsdeited

as finite Markov chains we prove that the two following problems are dblgda
does a system has information flow for a given regular property? isittrat the
system has no information flow for any (sequential) property?

1 Introduction

In this paper we study the followin§ecurity of Information Flowproblem:
verify that no partial observation of a system behavior does leak amiatmon
that should be hidden.

Statement of the problem and our resuli#le use the framework of [15] and

its formalization from [4]. In our trace-based approach, we assumedd eb-
servable low-level eventd and a set of (not directly observable) high-level
eventsH. The question is whether observing a certain low-level trace can give
information about the occurrence of high-level events in a probabilistisese
yielding quantitative information about high-level activity. More precisely w
propose garameterizediiew of information flow. We define information flow
with respect to @roperty(a set of system traces) which is deemed important for
the system under scrutiny. This property is parameterof the problem. The
system has information flow with respect to the given property if there ®xist
low-level observations for which the chosen property has differestbabili-

ties of occurrence. In this case, the quantitative, probabilistic knowladget

the given property is sensitive to the observation which can be madecand s
there is information flow in the system with respect to this property. It is worth
mentioning that this probabilistic definition of information flow is related to
Shannon’s original definition of information, based on probabilities. inpoe-
vious paper [4] the formalization of information flow was presented for tise fi



time together with necessary and sufficient conditions for having no informa
tion flow for all propertiesin a given system. Here, in order to get decidability
results we restrict ourselves to systems modelled by finite Markov chains (with
labelled edges) and to regular properties. It has a clear practical tarivA

field of application can be for example verification of security for paraltet p
gramming. Interleaving of actions of different threads is generally mahege

a probabilistic way, and can be modelled as a Markov chain. As for security
properties, many of them are regular.

Our first result states that it is decidable whether a system has information
flow for a given property. The key ingredient of the algorithm is a triakrir
linear algebra, reformulating the notion of information flow as orthogonality of
the set of vectors corresponding to all possible observations to sorokimnpe
vector.

Our second result states that it is decidable whether a given systeno has n
information flowfor all properties We consider two subcases: no information
flow for any property and no information flow for sequential propertithege
that do not consider the explicit value of low level actions).

Plan of the paperSection 2 introduces the model under study and some related
notations and definitions. In sections 3, 4 we present our decidabilitytsesu
just mentioned above. In Section 5 an example of application in the domain of
concurrent programs illustrates how the interleaving of low-level actiams c
give probabilistic information on what happens at the high-level.

Related work.There is an important body of work in studying definitions re-
lated to information flow, for an overview see, e.g., [11]. We restrict thra-co
paraison to the two features of our formalization: our notion of informatiom flo
is parameterizeénd it hagrobabilistic nature.

As far as we are aware of, only the paper of J. Halpern and K. O’Neill
[8] parameterizes information flow by giving a definition of secrecy in multi-
agent systems. They use a modal logic of knowledge in a state-basedasodel
compared to our approach which is trace-based. Their frameworkajzes
several existing approaches and can be extended to probabilistittysetueir
parametrization stems from defining formulas (knowledge) of what musgte k
secret.

The other probabilistic approaches are more restrictive. McLean [frb}in
duces thelow modelwhich distinguishes mere correlation from actual causal
influence. Gray [6] introduces probabilisticterferencein a context of finite
state machines and gives a more general information-theoretic frameagrk (
compared to [11]) including probabilistic channel capacity [7]. Sabekeld
Sands [14] define probabilistitoninterferencen the context of schedulers for



multithreaded programs, based on the concept of probabilistic bisimulation.
Lowe [10] treats quantitative information flow distinguishing probabilistic as-
pects frormondeterminismA probabilistic process-algebraic approach is given
in [1], focused omoninterferencegeneralizing the possibilistic variant and al-
lowing formal reasoning about the amount of information flow. All thesekaor
are aimed at the definition of the models and do not deal with algorithmic prob-
lems.

Very few authors studied verification problems related to information flow.
Among probabilistic approaches we can cite [5] that uses a processafgeb
malism to study bisimulation-based security properties. Concerning probabilis
tic models, [13] gives a decidability result for "nondeducibility on composition
for probabilistic timed automata, and Gray [6] gives a sufficient condition fo
information flow security whiclseemslecidable.

2 Probabilistic Event Systems

Notations. Given a finite alphabetl, A* (resp.A“) denotes the set of finite
(resp. infinite) sequences (or traces) over this alphabet. ThHESét the union
of A* and A¥. The empty sequence is denoted
Given a sub-alphabet’ C A and a trace\, A\ 4» denotes the projection of
onto this sub-alphabet.

Letu,v € (A*)",u = (z1,2z2,...,%,),v = (Y1,Y2, .- ., Yn). We denote by
u ® v thesimple interleavingf v andv defined asi @ v = z1y122Y2 - . . TnYn.-
If U,V C (A*)", we denote by @ V thesetU @ V = {u®v|u € U,v € V}.
If U,V C (A*)%, the definition ofU ® V' is extended in a standard way.

Probabilistic Event System3he behaviour of a probabilistic event system is
modelled by its sefl of traces which are finite or infinite sequences of atomic
events from a sell. A particular atomic event is distinguished which repre-
sents the halting of the system. For examplg,ig a sequence of atomic events,
it is useful to distinguish betweem\*has occurred but the system is still in ac-
tion”, and “A has occurred and the system stopped”. The last case is modelled
by the event\r. In order to unify the presentation it is convenient to use only
infinite sequences and thus we uge’ instead of\r. Then, from now onIr
is a set of infinite sequences which either do not contain any occuroéncer
of the form A where\ does not contain any occurrencerof

In order to deal with information flow issues, the set of atomic evéhits
divided into two disjoint sets, the séf of high-level {.e. secret) atomic events
and the seL of low-level (.e. public) ones.



The set of traced’r is equipped with a probability measugeover theo-
algebra generated by the cylinder€*, such that7r is u-measurable. The
measurg:(X ) of a measurable séf is denoted ag$’r,,(X), or shortly Pr(X).
Thus if we consider the infinite tre®&s built from Tr with edges labelled by
atomic events, each edge of the tree is equipped with a non-zero probability.
(We assume that every prefix of a tracelinhas a non-zero probability).

As usual, we introduce the following notation for conditional probabilities:
if P and( are two measurable events aRd(Q)) # 0, the conditional prob-
ability Pr(P|Q) is equal toPr(P N Q)/Pr(Q). Since we are interested only
in traces of the syster we will deal only with the conditional probabilities
relative to Tr. Thus, for each measurable eventwe denote byPrg(X) the
probability Pr(X|S) (Pr(S) is supposed to be positive).

Definition 1 A probabilistic event systenis a tuple (E, H, L, Tr, 1) where
E=HUL,HNL = (andH (resp.L) is the set of high-level (resp. low-level)
actions,u is a probabilistic measure oA and Tr C EY, the set of traces of
the system, ig-measurable.

We assume that only low-level actions are observable on the low-levelore., f
a trace)\ the projection)|;, is observable by low-level users. More precisely,
every finite prefix of\ ; is observable. Thus, from the observatioruof L*,
the low-level user who is supposed to know the entire system can canstruc
thebunchBgs(u) = {\ € Tr | uis a prefix ofA|; } and possibly deduce some
information on what happened or what will happen. When there is no aibpigu
we will write B(u) instead ofBg(u).

A property is a subset of2“. From now on we consider onjy-measurable
properties.

Definition 2 A systemS' is without information flowfor a property P if for
everyu,v € L* such thatB(u) and B(v) are non-emptyPrg(P|B(u)) =
Prg(P|B(v)).

The above definition means that, whatever the low level user observdeehe
not get additional information on the probability Bfto hold.

A particular case of interest is when only the presence of low level eients
important forP, not their value. Such a property is callejuentiabnd defined
below.

Definition 3 A property P is sequentialf there existsP’ C (H U {I})* such
that P = ¢~ (P’) whereg is a morphism which is identity o and for each
li € L,(b(li) =1



3 Decidability of Information Flow for a given property

We will now state some conditions under which one can decide whether a prob
abilistic event system has information flow under some property.

The most common probabilistic systems described in a finite way are Markov
chains, and the simplest properties are regular ones, i.e. recognizedeigr-
ministic Muller automaton. We recall below the definition of Markov chains [8{w
a small change) and Muller automata [12].

Definition 4 We callMarkov chain with labelled edgessystemd = (X, i, A, T')
where$ is a finite set of stateg,c S is the initial state,A is a finite alphabet,
T:SxAxS  [0,1]isafunctionsuchthats € S, s ,caT(s,a,8) =1
and for each(s,a) € S x A there is at most ong such thatT'(s, a, s') > 03.

This system is slightly different from a classical Markov chain for wHich
S x S + [0, 1]. Here there can be more than one edge between two states (if
they have different labels). In order to get decidability results we ssgfiat
T has its values in the s} of rational numbers.

Let P, be the set of paths from stajeThe setP; of infinite paths from the
initial state: is equipped with a probabilistic measyidn a standard way. A
trace is the infinite sequence of labels of an infinite path.

Let Tr be the set of traces. The probability measuren 7r is defined as
follows: for every basic cylindesA“, 1/ (uA*') is the mesure(wP,) wherew
is the path from labelled withu andgq is the last state of.

Thus if A is partitioned into two sets of high-level and low-level actioHs,
andL, the Markov chain defines a probabilistic event systemH, L, Tr, u').

Definition 5 A Muller automatoris a tupleM = (Q, A, qo, 4, F), whereQ is
the finite set of stategy is the initial state A is the set of transitions an# is
the set of accepting subsets. An infinite warts accepted by the automaton if
the set of infinitely visited states along sdrpath with labehs belongs taF.

It is a well known result that deterministic (complete) Muller automata have the
same expressive power as nondeterministic ones [12].

Now that we have defined the type of systems we consider, we can state the
main result.

Theorem 1 Given a syster§ described by a Markov chain with labelled edges,
and a regular property on infinite trace8 given as a deterministic Muller au-
tomaton, we can decide whether the sysfehas information flow for the prop-
erty P.
% this last condition means that the underlying automaton (without the probaiisieleter-
ministic
4 Such a path is unique in the case of a deterministic and complete automaton.



Proof: The full proof cannot fit in the page limitation and is given in appendix A.
Our algorithm works as follows:

1. first we compute a composition of the Markov chain and Muller automaton

2. then we simplify it by the rule 7*I — [” obtaining one step matrices,

3. next we reformulate the information flow problem in a linear algebraic form,
showing that it is equivalent to the orthogonality of a hull and a given¢khe
vector”,

4. and to conclude we prove that the hull mentioned above is computable.

O

4 Decidability of General Information Flow

Definition 6 A system isvithout (sequential) information flowf it is without
information flow for every (sequential) property.

In the paper [4], such systems were characterizednecessary and sufficient
conditions were given to ensure the absence of such information flowilVe
show in this section that it is possible to decide whether a system is without
(sequential) information flow when the considered system is a Markov chain
with labelled edges.

The plan of this section is as follows:

— we first recall some definitions and notations necessary to state the criteria,

— then we recall the theorems from [4],

— and we conclude by proving that all these criteria are decidable for the mod
els considered

In the following, low level actions are denotedb, ..., sequences of low-level
actionsu, v, ..., sequences of high-level actioas(3, ... and traces\, ', ....

LetS = (E, H, L, Tr, u) be a systenf] be the associated probabilistic tree
and Pref (T'r) denote the set of finite prefixes of tracesiofWe define:
H,(Tr) ={(a1,....,a0) € (H*)"|J a1, ...,an € L anay...ana, € Pref(Tr)}.
L,(Tr)={(a1,...,an) € L" | 01,...,an € H* anay...ana, € Pref(Tr)}
Trn ={away ... anan € Pref(Tr) | a; € H*, a; € L}.

For the decidability proof given below, we need to introduce some technical
terms related to the probabilistic tr&e

We are interested in the set of sequences of high-level actions (including
the empty word) which can occur starting from a nadélo make this set of
sequences more explicit we build for each such nodgrobabilistic tre€, in
the following way: we keep only the high edges reachabl€ inom z, and for
each node (includingz) accessible from: by a high path with at least one low



edge starting frony, we add a nodg’ and an edgegy, v') labelled by= and with

a probability equal to the sumof the probabilities of low edges starting from
y in 7. The tre€l,, is a probabilistic tree which has the following meaning: the
probability of a path inZ, starting fromz labelled bya (without ¢ labels) is
exactly the probability that the sequence of high-level actienscurs fromz;

the probability of a path iff;. starting fromz labelled bya and ending in a leaf
is the probability that fromx the sequence of actiomsfollowed by a low-level
action occurs.

Atuple (z,2',y,y’) of nodes of the tre€ is H, L-compatibleif there ex-
ist (aq, ..., ), (B, ..., Bn) € Hp(Tr), and(ay, ..., an), (b1, ..., bn) € Lp(Tr)
such that the paths from the root i9 2/, y, 3y are labelled respectively by
a1a] ...0p Gy, 01b1...anby, Bra1...0pa, aNdG101...6,by,.

Letps, ..., pn, q1, ---, Gn b€ the probabilities of edges labelleddy ..., a,, on
the path from the root to (resp.y). Letp!, ..., ., ¢!, ..., ¢}, be the probabilities
of edges labelled by, ..., b, on the path from the root t@' (resp.y’).

An H, L-compatible tupléz, z’, y, v') is perfectif for everyi = 1,...,n we
havep; /q; = p;/q;-

Let us now rephrase theorems from [4].

Theorem 2 A probabilistic system such th&t ¢ H“ is

1. without information flow iff its projection oh is reduced to a single trace.
2. without sequential information flow iff
1)Vn >0 Tr, = H,(Tr) ® L,(Tr).
(2a) EveryH, L-compatible tupldz, 2, y, y’) of the treeT is perfect and
(2b) the probabilistic treeg, (resp7,) and 7, (respZ,) are isomorphic.
(3) Foreveryn > 0 (L, (Tr) # 0 — Prg(Tr N (H*L)""1H“) = 0).

We can now state our decidability result:

Theorem 3 It is possible to decide whether a system has (sequential) informa-
tion flow or not.

Proof: Due to the page limitation, the full proof of this theorem is given in
appendix B. Here are the main ideas.

First for non sequential information flow the criterion is clearly decidable.

For point (1) of sequential information flow we compute the Muller automata
corresponding tQ),,enT'ry, andU, e (Hy, (Tr)® L, (Tr)). Checking the equal-
ity of the two languages is decidable.
For point (2) we compute an automaton whose states are the quadrufles-of
compatible states (states corresponding to sémé-compatible nodes) and
verify on the fly that the ratio on probabilities are preserved, and thaiottie-c
sponding probabilistic trees are isomorphic.



For point (3) we compute ergodic sets containing only high-level actiods an
if one exists, reason on the number of low-level actions necessarydo tiea
ergodic set. O

Here is an example of system without sequential information flow. In par-
ticular the ratio of probabilities of events andi, from state 2 to state 4 and
from state 3 to state 5 is the same.

h, 1/4

L, 1/4 2, 2/3

h, 1/3 K, 1/2

Fig. 1. A Markov chain without sequential information flow.

5 An example of application

Let us consider the problem of information flow for concurrent progralhe
question is whether observing some values for its low variables we catudenc
anything about high ones.

Consider the following multi-threaded programinspired by [16]:

e Threada: e Threadg:
ho = hl; hO = h2;
lo =1, ll =1,

The low variables aré,, [; initially equal to zerojg, h1, ho are high vari-
ables. The content df; andh. are different. Suppose that the two threads are
scheduled probabilistically, with equal probabilities at each step for eagadh
to be run. The corresponding Markov chain is given in figure 1.

Each state contains the current state of threadstfe set of instructions
still to execute). Fof = 1, 2, the labelh; means that the instruction := h; is
executed, and the labglcorresponds to the executionlpf= 1. The actions of
threada (resp.) correspond to the left (resp. right) edges.

For example state 5 correspondsdo:(lp := 1; 8 : [y := 1;) and state 6
corresponds too(: hg := hy; lp := 1;).

Suppose we are interested in the valuehgfat the end of the program,
more precisely in the property : ho = h; after the execution of). We can
represent? as the languageélL U HU L1)*h (LU L)* L1“. Indeed this regular



Fig. 2. The Markov chain associated to the program (each edge has a probbiijity

expression says that the last updatégfs iy := h;. Notice that this property
is sequential.

Clearly the probability of? is 1/2. But if we observe the low level, we have
Pr(P | ly) = 1/4. Thus the program has information flow for propeRyIn
this particular case it means that, seeing the order in which low level variables
are assigned, the low level user can gain (probabilistic) information orrtles o
in which high level variables are assigned.

6 Conclusion and further work

This paper presents two decidability results for information flow when the sys
tem is a Markov chain with labelled edges and properties are regularwirst
show that it is decidable whether a system has information flow for a specific
regular property. Then we consider the decidability of absence ofnivdtion

flow for a class of properties and prove that the criteria given in [4] smenthat

the system has no information flow for two classes of properties, areaiéeid

As it was noticed in the introduction, very few papers are devoted to al-
gorithmic questions related to information flow. To our knowledge, our results
are the first decidability ones for a probabilistic and parameterized modsel. Th
opens a way to quantitative evaluation of information flow.

Interesting open questions include: (1) computing quantitative estimations
of information flow, (2) generalizing our algorithms to more expressive for
malisms of system/property descriptions and (3) implementing and experimen-
tal testing of our algorithms in some applied domain.
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A Proof of Theorem 1

To prove the result, we state the problem in terms of matrices. We want the
probability Prg(P|B(u)) to be a constant (not dependant:9nin other words

we want to exhibit some constansuch tha ;fﬁgﬁfﬁ” = cfor everyu, which
is equivalent to:
Pr(PnN B(u)) = c¢x Pr(B(u)). (1)

The systend is described as a Markov chain with labelled eddes (X, sg, A, T)
andP is described as a deterministic Muller automateh= (Q, A, qo, A, F).
W.l.o.g., we can assume thatl is complete. We build a Markov chain with
labelled edgest’ which is the synchronized produgt x M = (X7, s, A, T")
defined by:

-5 =8x%0Q,

- 56 = (50, 90),

— the set of actions is the sam#;

— T"is defined agd”((s, q), a, (s1,q1)) = pif T(s,a,s1) = pand(q,a, q) is
a transition inA,

For a subseR of S x @), we denote its projection af by I75(R).

Let7 ={R C S x Q| II5(R) € F}.

In order to computé’r (PN B(u)) for a fixed wordu = 1;15...1,,, we decom-
pose each trace € P N B(u) asw = wywy Wherew, € H*ly H*ly...H*l,,.

Thus we can write:

Pﬂ B(u) = U B(u)(&q)P(&q) (2)
(8,9)ESXQ

WhereB(u)(syq) is the set of wordsv, € H*l1 H*ly...H*l,, which have a run
in A’ from s to (s, ¢), and P ;) is the set of wordsus which have a run ind’
with a projection/I; of its set of infinitely repeated states belongingAo
Let M; be the matrix which contains in ros € S’ and columnt’ € S’ the
probability to reach’ from s’ reading a word inif*1. The seti *I being regular,
this matrix is computable [2]. We defin®,, = M;, x ... x M;, which gives
the probability in4’ from each state to reach any other state after a sequence of
actions inH*l1 H*ly...H*1,,.

Let us recall what are the ergodic sets of a Markov chain. From theytioéo
Markov chains, it is known that the ergodic sets play a crucial role. i@enthe
underlying graph of the Markov chain. An ergodic set is a strongly eotaud
component of the graph from which one cannot go out. The probabiligeichr
an ergodic set from a given state is equal to 1 [9].



Let J be the vector which contains in the ravthe probability from¢’
to reach an ergodic set which belongsZ&& The vector. is rational and is
computable from a result of [3]. From (2) we have:

Pr(PN B(u)) = "Iy x M, x J. €))

Herelj is the column vector corresponding to the initial distribution (probability
1 for s{,, O for every other state).
The equality (1) can be formulated in terms of matrices as:

o x My x J =¢x Ty x M, x I. 4)

Herec is a constant (a rational value) atmds the vector with all components
equal to 1. A factorisation of the previous formula gives:

fIo x My x (J —cI) =0 (5)

and we need to prove that for every low level ward

First the constantcan be easily obtained: far= ¢, we get' Iy x (J —cl) =
0. The constant has to be equal to the coefficient.éfcorresponding ta;,.

To every wordu = lgly....[, € L* is associated the matrik/,, = M;, x
... x My, . Let us denote b§V, the productly x M,.

For every such word we get aV,,. We call W the linear hull of thesé’,.
We then prove the following claim:

Claim The system has no information flow for the propdttif and only if the
linear hull W is orthogonal to the vectov, e, = J — cl.

Since the hull contains all the vectdrs then if W is orthogonal tdVj,¢.x
we are sure that equation (5) is satisfied for every L* and that the system has
no information flow. Conversely, if the system has no information flow, goia
(5) is satisfied for every. € L* and consequently for every linear combination
of suchV,’s, i.e.for every vector inlt/.

To prove the theorem, we only need to show that the Wuis computable.
Let {ly,...,l;} be the letters of the finite alphabkt Let W be the hull gener-
ated by the set of vectofd, = V., V},, ..., V;, }. From this set we only keep a
subset{V4, ..., Vi, } which is a basis of¥;. Consider the productd’; 11, we
getasetofn; x k vectorsth’. If the hull W5 of the Vs andV’s has the same
dimension as¥; then we are done. If not, we take some of the ﬂg‘vvo com-
plete our basis{Vi, ..., Vi, , ..., Vin, }. We repeat this operation as long as we
add new vectors to our basis. As soon as wéggt; = W; for some;, it means
that’IW; is stable under application of any of the matriées, ..., M;, and we
have obtained?’. Since the dimension d# cannot be greater than the number
of states in the system, the spdéeis computable (we iterate our process at
most|S’| times). This concludes our proof of the decidability of information
flow for a given property (Theorem 1).



B Proof of Theorem 3

Proof: Whereas it is obvious to prove that the criterion for the absence of infor-
mation flow is decidable, we will now give a sketch of the proof of decidability
for for the absence of sequential information flow.

We consider the underlying graph of the Markov chdimepresenting the
system.

Property (1) is decidable:

Let us consider the underlying automaton of the Markov cbéiffrirst we
build an automato4’ from A by adding a statg; and, for every transition
(¢,1,¢") (with I € L), a new transitior(¢, [, ¢). The language recognized by
this automatond’ with ¢, as a final state is exactly,,. , 7rn.

We then construct a finite automatdh which recognlzesUn>0 n(Tr) ®
L,(Tr) as follows. LetA;, be a deterministic finite automaton which recog-
nizeslJ,,-, L» (computable fromA4 by abstracting away the high level actions
and considering all states terminal) and dgt be its set of states. The set of
states o3 is Q x Q1 U {qr}, its initial state is the pair of initial states @ and

@21 and its final state igy. Transitions of3 are:

- ((g,q1), h, (¢', 1)) if there is a transitioriq, i, ¢") in Aandh € H

- (¢, 1)1 ,(q q})) if there is a transition(q, !, ¢’) in A and a transition
(Q17 l?Ql) |n ./41 W|th l l/ S L

- ((g,q1),1,qr) ifthere is a transitiorig, I’, ¢’) in A and a transitiorq:, , ¢;)
in Ay with ;1" € L.

It is easy to prove that the language recognized3og J,,-.o Hn(7Tr) ®
L, (Tr). On the other hand we can decide whetBend.4’ recognize the same
language which is equivalent to property (1).

Property (2) is decidable:

A H, L-compatible tuple is defined by four words in soifie,:

alll...anln, ﬂlll...ﬂnln, ;Oéllll...anl;l, ﬂllll 7,1[;1

Consider the four paths id from the initial state with these four labels, and

let
N T l/ L
q 71. q", TZT,Z. gt o g, i T 7t the four transitions with label

andl; respectively.

We have to verify thap’ /p* = pi /p/ fori = 1,..,n, for everyn > 0.

It is easy to compute the set of tuplgg, ,ql,ri). Indeed, we build the
finite automatorC whose set of states i9* U Q* where(@ is a copy of Q.
Transitions are:

— (q,7,q1,7m1) — (¢, 7, ¢}, 7) if there existsy, 3 € H* such that

o / B ! o / B /
q q, T ™, q1 q1, T1 AT



- ((jvfa(jlvfl) (q T q17T1)|f

o, l v I
g— ¢, r— 1, q1— qi, ri— rpin A

The initial state i9qo, g0, g0, qo) Whereqy is the initial state of4, and we
keep only the reachable states from the initial state. Let us observe that the
transitions are computable. Indeed, for e&ghy'), (¢1,¢}) let R andR1 be the
regular sets of words i/ * which are labels of paths fromto ¢’ and fromg;
to ¢ respectively. On can compute whettfén R; # () and it is what we need
to build the transitions of.

Property (2a) is satisfied iff for every transition 7, ¢1,71) — (¢', 7/, ¢}, )
in C we havep/p’ = p1/p) for each(l, ) such that:

1 l G 4

qﬁq rp, r, q1'—>q1, rlp riin A.

In order to prove property (2b) we have to build for each state the
Markov chain4 a new Markov chaimd, in the following way: we keep only the
high edges reachable i4 from ¢, and for each state (including q) accessible
from ¢ by a high path with at least one low edge starting frgmve add a state
s’, an edge(s, s’) labelled bys and with a probability equal to the sumof
the probabilities of low edges starting frasmin A4, and a loop ins’ labelled by
¢ and with a probability 1. Clearly, property (2b) is satisfied iff for everyesta
(g,7,q1,m1) in the automatol described above, reachable from the initial state
by a path of positive length, the Markov chaids; and.A;;_ taking as initial
state respectively andq; are isomorphic.

Property (3) can be decided looking for the ergodic sets containing only
transitions labelled with events froi. If there is none then for each > 0,
Prs(Tr N (H*L)"HY) = 0 and (3) is satisfied. If there is at least one such
ergodic set, we take a path leading to one of these sets, and ttedlnumber
of low level events in this path. Then either almost all paths have exadtiy
level events, and in that cag®&s(7r N (H*L)"H¥) = 1 and (3) is satisfied or
there is:

— either a path leading to one such ergodic set witkk n low level events
in this path. In this last case we hayé&,i(7r) # 0 and Prg(Tr N
(H*L)PH%) # 0,

— or a path with strictly more thamlow level events in which cagé.,,+1(7r) #
¢ and Prs(Tr N (H*L)"H*) # 0.

In both cases (3) is violated.
We have thus proved that all four criteria are decidable, which consltiue
proof.



