
Estimation of the Click Volume
by Large Scale Regression Analysis

Yury Lifshits1 and Dirk Nowotka2

1 Steklov Institute of Mathematics St.Petersburg, Russia, yura@logic.pdmi.ras.ru
2 FMI, Universität Stuttgart, Germany, nowotka@fmi.uni-stuttgart.de

Abstract. How could one estimate the total number of clicks a new ad-
vertisement could potentially receive in the current market? This ques-
tion, called the click volume estimation problem is investigated in this
paper. This constitutes a new research direction for advertising engines.
We propose a model of computing an estimation of the click volume.
A key component of our solution is the application of linear regression
to a large (but sparse) data set. We propose an iterative method in or-
der to achieve a fast approximation of the solution. We prove that our
algorithm always converges to optimal parameters of linear regression.
To the best of our knowledge, it is the first time when linear regression
is considered in such a large scale context.

1 Introduction

In general, an advertising engine (AE) (1) maintains a database of advertise-
ments, (2) receives ad requests “some person is accessing some media”, and (3)
returns several ads that are most relevant to this request. Google AdWords,
Yahoo! Search Marketing, and Microsoft adCenterare the most prominent ad-
vertising engines for sponsored search. Google AdSenseis an example of an AE
for contextual advertisements. Finally, the Amazon.com recommendation sys-
tem [8] is a particular case for an e-commerce recommendations AE. We expect
that specialized advertising engines will be introduced very soon for blogspace,
social networks, computer games and virtual reality, and even supermarket bills.

In this paper we start a new research direction for advertising engines. Con-
sider the following question: How could one estimate the total number of clicks
a new advertisement can potentially receive in the current market? We call this
the click volume estimation problem and use CV (a) to denote the click
volume of an advertisement a. Knowledge about advertisements (the ad space),
requests for ads (the request space), and historical information can be used to
calculate an estimation of CV (a). The click volume estimation problem has not
yet been investigated in the literature to the best of our knowledge.

The same ad

to all ad requests
clickclickclick



There are plenty of reasons to be interested in the click volume of an ad.
Let’s consider some of them.

– Maintainers of advertising engines might wish to understand how many clicks
they can (approximately) sell for any given advertisement. Click volume
information can be useful for setting optimal prices.

– The click volume can measure the current effectiveness of advertising engines.
– Advertising engines might use different strategies for the cases when the click

volume is smaller than the demand from advertisers and when it is larger.
In the latter case an AE can skip some ad request even if advertisers mark
it as belonging to their target group.

– The real goal of an AE is to recognize the whole interested audience for the
given ad and to display it only to these people. Hence, estimating the volume
of that audience is the first step towards the recognition problem.

– Using click volume estimation, an advertiser can predict the necessary re-
sources needed to cover a given fraction of market.

– Comparison of overall click volume and click volume restricted to the target
subspace of ad requests provides a kind of “target coverage” value. It can help
advertisers to understand whether their target description is good enough.

– Assuming we have a purchase history table. Then applying similar techniques
we can estimate the purchase market for a new product.

Results. This paper is the first step towards setting a formal definition of click
volume and constructing efficient algorithms for computing reliable CV estima-
tions. Our main contributions are (1) a general model of an advertising engine
and its history table, (2) a methodology for calculating the click volume using
linear regression, (3) a fast iterative algorithm for solving the linear regression
problem on large and sparse data sets based on [11, 18], (4) a complexity bound
for one round of iterations, and (5) a proof of convergence for the algorithm.
Finally, we pose a series of open problems and suggest directions for further
research in Section 4.

Let us describe our solution for the click volume problem in an informal way.
We take a history table and transform it into the list of pairs: event vector,
empirical value of click-through rate. Here, an event vector characterizes a dis-
played ad, an ad request and their relationship. It belongs to a high dimensional
euclidian space, but only few of its components are nonzero. We make an as-
sumption that the click-through rate (more precisely, logit of click-through rate)
can be calculated as a scalar product between the event vector and some un-
known vector α. Then we have to find the α that minimizes the prediction error
over the whole history table. This is a well-known linear regression problem. Un-
fortunately, classical methods, like direct method and SVD-based method [15]
are infeasible in our settings. As far as we know, all previous algorithms have
time complexity Ω(mn) where mn is the size of underlying matrix. In order to
get better complexity, we have to use the sparseness of the underlying matrix.

In essence, we need just to compute the projection of one vector to the linear
hull of some family of sparse vectors. While solving systems of linear equations



and computing eigenvectors are well studied in sparse settings [13], no particular
method was suggested for the projection problem. In this paper we propose an
iterative algorithm based on componentwise descent method [18]. In [18] only one
component of the current approximation is updated in every turn. Inspired by the
sequential minimal optimizations method [11] used for training support vector
machines, we make a modification to componentwise descent method. That is,
we calculate the optimal shift value analytically. We show that shift computation
is linear just to the number of nonzero components of the corresponding term
vector.

In this paper we just start the investigation of solving the large scale regres-
sion problem on sparse data. But we are convinced that this method can find
much more applications in web computing than just click volume estimation.

Related research. The algorithm for predicting the click-through rate in [12] was
the main inspiration source for our research. However, there are some important
differences. In [12] the click-through rate (hence, click volume) is estimated for
all ads shown for a given search term (ad request in our terminology). We present
a solution for the dual problem: fixing an ad and assuming that it is displayed
on all ad requests. Moreover, we estimate the click through rate for any pair of
ad and ad request. In our case the problem of insufficient history can not be
solved solely by the assumption that two content-similar ads have a similar click
volume. Indeed, a collection “ad-to-ad-request” is far from the completeness for
every ad and even for every ad cluster. Next, we present a model which captures
various industrial solutions at the same time, while [12] addresses only sponsored
search technology.

Let us compare our regression based solution with other possible approaches.
For every newcomer event vector one can locate the nearest events from our his-
tory table and use their click-through rates as the basis of estimation. However,
the nearest neighbors algorithms either are two slow [6], or use assumptions
that clearly do not hold [17] for our case. Alternatively, one can, for example,
treat ads as people, ad requests as books and empirical click-through rates as
ratings. Than we can apply the well developed theory of collaborative filtering
[10]. Unfortunately, one needs at least few appearances of the newcomer ad in
the history table to apply this method. Also, collaborative filtering does not use
term similarity between ads and ad requests.

We refer to the papers [4, 16] for a general introduction to sponsored search.
Algorithms for optimal ad choosing are constructed in [9]. Auction design for
sponsored search is well presented in [3, 5]. Many open problems around adver-
tising engines were posed on the SSA’06 panel discussion [1]. Finally, various
versions of similarity for search terms (i.e. ad requests in our terminology) are
investigated in the paper [2].

2 Basic Model: Advertising Engine and History Table

The general setting discussed in this paper is an advertising engine which, given
some historical information about placing advertisements and a new advertise-



ment from an advertiser, has to estimate the number of clicks (click volume) this
new ad would get over a certain period of time. Let’s define our notation.

Let A be the set of all advertisements. By convention we denote elements of A
by a and its subscripted versions. Let anew ∈ A denote the advertisement whose
click volume will be estimated. In principle an element of A might be defined
by several properties like the content of the advertisement (for example text
with a link and a phone number), a target audience description, some keywords
describing the ad, and so on. However, all we assume here is that an ad is
represented by a vector of reals. For example, an entry of a might denote the
membership of the ad in some property where 1 means that a has that property
and 0 means that a does not have that property.

Furthermore, we need a notion of ad request. The AE is contacted every time
a person is contacting some media (in most cases websites). Let R be the set
of all ad requests whose elements are denoted by r and its subscripted versions
in the following. Requests, like advertisements, could be described by a number
of parameters like a person (or rather IP address), media (for example a search
web page), and an action (for example an entered search query). But again, all
we require is r being a vector of reals, like advertisements.

Advertisements and requests together form an exposition event. An event
should be represented by features of the advertisement (for example, keywords,
language, target group), features of the ad request (for example, location, search
phrase), and the relation between ad and ad request (for example, whether or
not the language of the ad is spoken at the location the request came from). Let
us assume that an event is represented as a vector such that each component
denotes whether or not that event possesses that feature. Let E denote the set of
all events. Given an ad a and a request r, let e(a, r) denote the event representing
the ad, the ad request, and the relation between them.

The data we use for our estimation of the click volume is called history
table over E × {0, 1} where (e(a, r), b) denotes an advertisement a shown on ad
request r which received a click if b = 1 and no click if b = 0. Let us fix an
arbitrary history table HT with n entries for the rest of this paper. We have

HT = (e(a1, r1), b1), (e(a2, r2), b2), . . . , (e(an, rn), bn) .

All

distinct

ad

requests

All distinct ads

–
–

–

–
–

–
–

–

–

–

+

+

+
+
+

+

+
+

+

+

We can visualize the history
table as a set of + and − sym-
bols in the table whose columns
correspond to ads and rows cor-
respond to ad request. Actually
every cell represents the set of all
possible unique exposition events
that are observed at the same
pair (a, r). Our history table is
a collection of “click-occurrence”
values on some points in the ta-
ble. We want to stress here that

there is an important difference between columns and rows. Namely, in our



history ad requests are taken randomly from standard daily (weekly, annual)
distribution. But ads were chosen by the advertising engine and they are by
no means random. Typically, for every row our history covers only few cells.
Therefore, we can assume that only a linear (more precisely, proportional to the
number of all requests) number of cells is covered by the history.

The click volume CV (a) is the total number of clicks over a fixed period of
time (for example one week) that we would expect for a to get if shown at all ad
requests taken from the same distribution as in HT . The click-through rate is a
standard term for internet advertising. We recall it in the setting of our model.
Given an event e the click-through rate (CTR) CTR(e) is the ratio between the
number of clicks for e and the total number of times e occurs (impressions), or
in other words, the probability that a is clicked on in conjunction with the ad
request r when e = e(a, r).

3 Reduction to the Regression Problem

The history table HT records for each event e either a click or no click. What
we really want to know, though, is the probability of an event being clicked,
that is, we need the actual CTR of e. The CTR of an event can in principle be
calculated from the number of times e occurs in HT and the number of times
when e received a click. However, this simple approach does not work well, since
most of the vectors in HT are unique.

The history table HT is assumed to be our given input. Although it is a nat-
ural way to present the input data, it is not suitable for calculating the click
volume of a new ad quickly. Therefore, HT is pre-processed. The first step in the
pre-processing phase is a dimensionality reduction of HT . There exist a number
of different approaches to reduce the dimensionality of E; see [14] for a sur-
vey. We suggest dimensionality reduction by some term extraction method, for
example term clustering. Latent semantic indexing is another method for term
extraction. However, we do not suggest latent semantic indexing here since it
will turn out that sparseness of the event vector set is a desired property for
applying the linear regression method to our problem as suggested below; see
the next section in particular. Let us assume that DR denotes the dimensionality
reduction function of our choice, that is, DR(e) denotes the event derived from
e by reducing its dimensionality.

The function DR is now used to transform the history table HT into a reduced
history table RHT . Firstly, we replace every entry (e, b) of the history table HT
by (DR(e), b), and secondly, all entries (e′, b1), . . . , (e′, bk) of the same reduced
event e′ are combined to one entry (e′, b′) where b′ denotes the click through rate
(
∑

1≤i≤k bi)/k for e′. Let the set of all reduced events in RHT be denoted by a
matrix T and the set of all click through rates by a vector β, that is RHT = Tβ.

Given an event enew , the problem of estimating the click through rate of enew

can be formulated as the problem of fitting the function that relates reduced
events to their click through rate. The linear regression analysis is a standard
method for curve fitting where a linear function is used to describe the relation



between two variables; in our case, these are reduced events and click through
rate.

However, it is not guarantied that the function resulting from the linear
regression analysis yields a value between 0 and 1 for enew . To avoid this problem,
we apply a one-to-one mapping from [0, 1] to [−∞,+∞] to all click through rate
values in RHT . Such a mapping is for example logit where logit(p) = log(p/(1−
p)). Let now γ = logit(β), and we perform a linear regression analysis on Tγ.
The regression analysis yields a vector α such that ‖Tα− γ‖ is minimal, that is,
α approximates the relation between reduced events and the (logit of the) click
through rate such that the sum of the quadratic error of all entries is minimal.
The click through rate of enew is now estimated by logit−1(α · DR(enew )), that
is (1) the dimensionality of enew is reduced, (2) this reduced event is combined
with α, and (3) the resulting value is mapped into the interval [0, 1] by logit−1.

We would like to know the sum of all clicks a new ad anew should get when
exposed to all requests of the history (for a given time period). That is, a query
consists of an ad anew which needs to be combined with all requests in HT . We
get the following formula.

CV (anew ) =
∑

1≤i≤n

logit−1(α ·DR(e(anew , ri)))

All these steps are summarized in the following methodology.

Methodology for Click Volume Estimation

Pre-processing:
1. Dimensionality reduction of E, e.g. by term clustering
2. Calculation of RHT = Tγ

3. Approximate calculation of α such that ‖(αT )−γ‖ is minimal
(see next section)

Query: Calculate CV (anew ) =
∑

1≤i≤n logit−1(α ·DR(e(anew , ri)))

4 Solving the Large Scale Regression Problem

The methodology of estimating the click volume of anew of the previous section
employs the linear regression analysis for calculating CV (anew ). Consider the
history table entries of reduced dimensionality, let e = DR(e(anew , ri)). The
direct calculation of parameters of linear regression requires inverting a huge
and non-sparse matrix. Since we assume to work with large data sets and under
strict time constraints this method is not available to us. Instead, we suggest an
alternative method to estimate α which is iteratively approximating the optimal
solution and which also has good convergence properties for sparse settings as the
ones we consider for click volume. Intuitively, α is learned by using the reduced
history table as a training set.



The formal setting. We consider the history table of reduced dimensionality
RHT where we have a logit value for click through rate assigned to every event
entry e. Let m denote the dimension of e, and let T denote the n ×m matrix
of entries in RHT , and let γ be an n vector where γi denotes the logit value
of the click through rate the i-th entry in RHT . Let tj denote the j-th column
vector (of dimension n) of T for all 1 ≤ j ≤ m. The goal is to find the α such
that ‖Tα − γ‖ is minimal. Certainly, α = (T · T ∗)−1T ∗γ. However, calculating
α directly this way is too expensive for our purpose. Therefore we describe an
iterative method in the next paragraph which generates a sequence α(1), α(2),
. . . converging towards α.

The iterative algorithm. Let α(1) be the zero vector. Assume α(k) is known and
we would like to calculate α(k+1). First, one component j of α(k) is chosen. Then
α(k+1) is such that αk+1

i = α
(k)
i for all i 6= j and

α
(k+1)
j = α

(k)
j +

(α(k)T − γ) · tj
‖tj‖2

.

Intuitively, we minimize the error of the “prediction” of all CTR values in our
history table by α(k) by adjusting only the j-th component α(k) while all other
components are left unchanged.

A geometric interpretation. Let us reformulate our algorithm in terms of dis-
crepancy vector ϕ:

ϕ(k) = γ − α(k)T

ϕ(0) = γ, ϕ(k+1) = ϕ(k) − ϕk · tj
‖tj‖2

tj

Consider the linear hull span(T ) of T . We would like to come as close to
γ as possible, while all our estimations belong to span(T ). Hence, our optimal
estimation is the orthogonal projection of γ to span(T ), let us denote it by
ϕ. A minimal error achieved by a vector that is equal to span(T )-orthogonal
component of γ. In every step of our algorithm we do the following. Take our
current estimation ϕ(k) ∈ span(T ), draw a line parallel to tj and going through
ϕ(k), then project γ (or, with the same result, ϕ) to this line. This projection
point is our new estimation ϕ(k+1).

Algorithm analysis.

Theorem 1 (Convergence theorem). Consider euclidian space, vector ϕ(0),
family of vectors T = {t1, . . . , tm}, and fixed infinite order of updates J :
j1, j2, . . . that contains every index infinitely many times. Let us construct the
sequence ϕ(k) by the following rule:

ϕ(k+1) = ϕ(k) − ϕ(k) · tjk
‖tjk‖2

tjk

Then the sequence (ϕ(k)) converges to ϕ, where ϕ is the span(T )-orthogonal
component of ϕ(0).



Proof. Note that ϕ(k+1)⊥tjk . Indeed,

ϕ(k+1) · tjk = ϕk · tjk −
ϕ(k) · tjk
‖tjk‖2

tjk · tjk = 0.

Since ϕ(k) = ϕ(k+1) + ϕ(k)·tjk

‖tjk
‖2 tjk and ϕ(k+1)⊥tjk , we have ‖ϕ(k)‖ ≥ ‖ϕ(k+1)‖.

Assume now that (ϕ(k)) does not converge to ϕ. Since ‖ϕ(k)‖ is bounded, we
can choose a subsequence (ϕ(ki)) converging to some ψ 6= ϕ. Let us divide all T
family to those vectors that are orthogonal to ψ (subfamily T1) and those that
are not orthogonal (subfamily T2). Then T2 is nonempty, otherwise ψ coincides
with ϕ.

Let c = minj∈T2
ψ·tj
‖tj‖ . Since there exists a subsequence of (ϕ(k)) converging

to ψ, there are infinitely many members, that belong to the c/2 neighborhood
of ψ. Consider one such visit ϕ(k). Let us look at the next updates. If we use
jk ∈ T1 we can come only closer to ψ. Indeed, as was shown above, ϕ(k+1)⊥tjk ,
moreover ψ⊥tjk . Since

ϕ(k) − ψ = (ϕ(k+1) − ψ) +
ϕ(k) · tjk
‖tjk‖2

tjk

and the first and second terms are orthogonal, ‖ϕ(k) − ψ‖ ≥ ‖ϕ(k+1) − ψ‖.
Since every index occurs infinitely often we will finally apply an update for

some jk ∈ T2, still being in the c/2 neighborhood of ψ. Let us estimate the “size”
of this step.

ϕ(k) · tjk
‖tjk‖2

tjk =
ψ · tjk + (ϕ(k) − ψ) · tjk

‖tjk‖2
tjk ≥

c‖tjk‖ − c
2‖tjk‖

‖tjk‖2
tjk ≥

c

2‖tjk‖
tjk .

Since the shift was orthogonal to ϕ(k+1), we have

‖ϕ(k+1)‖2 ≤ ‖ϕ(k)‖2 − c2

4
.

Let us summarize our observations. Sequence (ϕ(k)) visits c/2 neighborhood
of ψ infinitely often, once coming inside it cannot escape by T1 updates, while
T2 update leads to a substantial decrease of ‖ϕ(k)‖. We get a contradiction with
the facts that ‖ϕ(k)‖ is nonnegative and monotonically decreasing. �

Lemma 1 (Round complexity). It is possible to make a single update for
every j (one round of updates) in time linearly depending from the number of
nonzero elements in the history table.

Proof. At the beginning, we precompute norms of all tj . We will maintain both
current regression vector α(k) and current discrepancy vector ϕ(k) = γ − α(k)T .
We start from α(k) = 0 and ϕ(0) = γ. Consider some j and let qj be the number
of nonzero components in tj . At first we update α(k)

j in O(qj) time. Indeed, we



need to calculate the scalar product between tj and ϕ(k) and this can be done
by few corresponding look-ups. Then we update the discrepancy vector by the

rule ϕ(k+1) = ϕ(k)− ϕ(k)·tjk

‖tjk
‖2 tjk . Again, scalar product can be computed in O(qj)

time and only qj components of ϕ(k) should be modified. Summing over all j we
get the required round complexity. �

Some other complexity remarks:

1. A vector α(k) can be safely updated in two components j1 and j2 in parallel
if we have tj1 ∩ tj2 = ∅. Again the sparseness assumption would allow for a
high degree of parallelism in practice.

2. Note that in the case of orthogonal column vectors ti α is reached by updat-
ing every component exactly once.

3. Also the joint update of two components i and j is not expensive. In order
to calculate(

α
(k+1)
i α

(k+1)
j

)∗
=

(
α

(k)
i α

(k)
j

)∗
− ((titj) · (titj)∗)−1 (titj)∗(α(k)T − γ)

we need to invert (titj) · (titj)∗ which is only a 2× 2 matrix.

5 Further Work

In this paper we state the click volume problem, show how one can reformulate
it as the large scale regression problem and propose an iterative algorithm for
solving the latter. It is the first time this has been done and many questions
follow from that. How do we estimate the convergence speed of our algorithm?
How should we choose the next component for update? Assume that we allow
the output “cannot predict CTR for this event”. Can we improve the accuracy
by solving the problem with this relaxation? Can we combine the regression
approach with other methods, e.g. clustering?

Experimental validation. Of course, one wants to verify our regression based
approach in industrial applications (e.g. Google AdWords system). Forthcoming
experiments should answer the following questions. What is the convergence
speed of our iterative algorithm in practice? What is the overall error of linear
regression estimation on the history table? What event vector representation and
dimensionality reduction routines lead to the most accurate CTR prediction?
Finally, it is interesting to apply the large scale linear regression algorithm to
other problems, e.g. predicting news article popularity on digg.com.

Related problems for on-line advertisements. The dual problem for click volume
estimation is the ad volume estimation. Namely, to estimate the total amount
of advertisements that could get a positive response on the given ad request.
Click volume for the whole market : What is the fastest way to estimate the click
volume for every advertisement in the system? More precisely, can we do it faster
than doing a separate click volume estimation for every ad?



Finally, the click volume problem is just a single member of our list of web-
related algorithmic problems. In [7], one can find more theoretical questions in
web computing.

Acknowledgments. The authors would like to thank Javier Esparza, Stefan Göller,
Benjamin Hoffmann, Stefan Kiefer, Mikhail Lifshits, Markus Lohrey, Hinrich
Schütze, Kirill Shmakov, Jason Utt and anonymous referees of the previous ver-
sion of this paper for their useful comments and fruitful discussions.

References

1. Models for sponsored search: What are the right questions? Panel Discussion at
SSA’06, 2006.

2. K. Bartz, V. Murthi, and S. Sebastian. Logistic regression and collaborative filter-
ing for sponsored search term recommendation. In SSA’06, 2006.

3. B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the general-
ized second price auction: Selling billions of dollars worth of keywords. In SSA’06,
2006.

4. D. Fain and J. Pedersen. Sponsored search: a brief history. In SSA’06, 2006.
5. J. Feng, H. Bhargava, and D. Pennock. Implementing sponsored search in web

search engines: Computational evaluation of alternative mechanisms. Informs
Journal on Computing, 2006.

6. J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
In STOC ’97, pages 599–608, 1997.

7. Y. Lifshits. A Guide to Web Research. Materials of mini-course at Stuttgart Uni-
versity. Available at http://logic.pdmi.ras.ru/∼yura/webguide.html, 2007.

8. G. Linden, B. Smith, and J. York. Amazon.com recommendations item-to-item
collaborative filtering. Internet Computing, 2003.

9. A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. AdWords and generalized
on-line matching. In FOCS’05. IEEE, 2005.

10. M. O’Connor and J. Herlocker. Clustering items for collaborative filtering. SIGIR
’01, Workshop on Recommender Systems., 2001.

11. J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. In Advances in kernel methods: support vector learning, pages 185–
208, Cambridge, MA, USA, 1999. MIT Press.

12. M. Regelson and D. Fain. Predicting clickthrough rate using keyword clusters. In
SSA’06, 2006.

13. Y. Saad. Iterative methods for sparse linear systems (2nd edition). SIAM, 2003.
14. F. Sebastiani. Machine learning in automated text categorization. ACM Computing

Surveys, 34(1):1–47, 2002.
15. G. A. F. Seber and A. J. Lee. Linear Regression Analysis. Wiley, 2003.
16. A. Tuzhilin. The Lane’s Gifts v. Google report, 2006.
17. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In SODA ’93, pages 311–321, 1993.
18. V. Zhdanov. The componentwise descent method. Mathematical Notes, 22(1):566–

569, 1977.


