
Compression for Data Structures
An Invitation to Start a New Research Area

Yury Lifshits
http://logic.pdmi.ras.ru/~yura

Steklov Institute of Mathematics at St.Petersburg

October 2006

1 / 22

http://logic.pdmi.ras.ru/~yura

Want to store date in the smallest possible space?
Use data compression!

LZ-FAMILY, ARITHMETIC ENCODING, BWT, ...

Want to have the fastest query processing time?
Use data structures!

BALANCED TREES, SUFFIX ARRAYS, HEAPS, HASH TABLES, ...

Can we get BOTH these advantages?

2 / 22

Want to store date in the smallest possible space?
Use data compression!

LZ-FAMILY, ARITHMETIC ENCODING, BWT, ...

Want to have the fastest query processing time?
Use data structures!

BALANCED TREES, SUFFIX ARRAYS, HEAPS, HASH TABLES, ...

Can we get BOTH these advantages?

2 / 22

Want to store date in the smallest possible space?
Use data compression!

LZ-FAMILY, ARITHMETIC ENCODING, BWT, ...

Want to have the fastest query processing time?
Use data structures!

BALANCED TREES, SUFFIX ARRAYS, HEAPS, HASH TABLES, ...

Can we get BOTH these advantages?

2 / 22

We Want to Join Them

3 / 22

Mathematical Challenge

For a given “query problem” to develop a data structure such
that:

Query time comparing to the classical data structures is
linear
For some kind of “regular data” the size of our data
structure is smaller than the original data size

We might be interested in additional properties:
Construction time for our DS should be reasonable
Update time should be small
Avoid “one bit catastrophe”: small update should not lead to
a large expansion of DS

4 / 22

Mathematical Challenge

For a given “query problem” to develop a data structure such
that:

Query time comparing to the classical data structures is
linear
For some kind of “regular data” the size of our data
structure is smaller than the original data size

We might be interested in additional properties:
Construction time for our DS should be reasonable
Update time should be small
Avoid “one bit catastrophe”: small update should not lead to
a large expansion of DS

4 / 22

Motivation

Three reasons for “Compression for Data Structures”:
Potential applications in all kind of databases. Real web
and biological data sets are now extremely huge
Interplay of two famous fields: compression and data
structures
Looks like a fresh topic! Basic problems are still open

5 / 22

Name for the Topic

Working title:
Compression for data structures

Also used:
Data optimization
Queriable compression

What name for this topic do you suggest?

6 / 22

Name for the Topic

Working title:
Compression for data structures

Also used:
Data optimization
Queriable compression

What name for this topic do you suggest?

6 / 22

Outline

1 Compression for Specific Problems
Membership Test
Pattern Matching
Graph Navigation
Kolmogorov Lower Bound

2 Workflow for Further Research

7 / 22

Outline

1 Compression for Specific Problems
Membership Test
Pattern Matching
Graph Navigation
Kolmogorov Lower Bound

2 Workflow for Further Research

7 / 22

Part I

Let us start with two query problems

How to store sets if we want to run
membership test in logarithmic time?

How to store texts if we want to run pattern
matching in time proportional to the pattern

length?

8 / 22

Set Compression with Fast Membership Test

Problem formalization:
Given a set A of k integers from the interval [1..n]

Computational model: one space unit for numbers from
[1..n], arithmetical operations also in one step
Query “whether x ∈ A” should be answered in O(log k)

Data structure should use o(k) space for some reasonable
class of “regular” sets

Do not go to the next slide
What compression method do you suggest for membership

test?

9 / 22

Set Compression with Fast Membership Test

Problem formalization:
Given a set A of k integers from the interval [1..n]

Computational model: one space unit for numbers from
[1..n], arithmetical operations also in one step
Query “whether x ∈ A” should be answered in O(log k)

Data structure should use o(k) space for some reasonable
class of “regular” sets

Do not go to the next slide
What compression method do you suggest for membership

test?

9 / 22

I Love DAGs!

DAG = directed acyclic graph:
Natural idea: if some object is represented by tree and
some branches are similar, then we should merge them
[Rytter, 2003] For a given text T of length n we can
compute log n-approximation of the minimal
DAG-representation for T using time O(n log n). Moreover,
this DAG is always balanced

10 / 22

Solution for Membership Test

Construction and query:
Rewrite the set A as a run-length encoding of n-long
0, 1-string
Apply Rytter’s transformation for getting DAG representation
Compute “shift values” on the DAG’s edges and “key
values” for vertices
Query is simple: use DAG as a search tree!

11 / 22

Compression for Suffix Trees
Problem formalization:

Given a text T in a constant alphabet
Computational model: one space unit for characters, all
comparison/search operations on characters require one
step
Query “whether P is a substring of T ” should be answered
in O(|P|) time
Data structure should use o(|T |) space for some
reasonable class of “regular” texts

Motivation: compact index for desktop search

What compression method do you suggest for pattern
matching?

12 / 22

Compression for Suffix Trees
Problem formalization:

Given a text T in a constant alphabet
Computational model: one space unit for characters, all
comparison/search operations on characters require one
step
Query “whether P is a substring of T ” should be answered
in O(|P|) time
Data structure should use o(|T |) space for some
reasonable class of “regular” texts

Motivation: compact index for desktop search

What compression method do you suggest for pattern
matching?

12 / 22

Looks Like a Challenge

I do not know how to solve “Compressed Suffix Tree” problem

As a first step I suggest to solve it for two classes of low
informative texts:

Texts of length n where only log n letters are different from a
Texts of the type T = S

√
n, where |S| =

√
n

13 / 22

Looks Like a Challenge

I do not know how to solve “Compressed Suffix Tree” problem

As a first step I suggest to solve it for two classes of low
informative texts:

Texts of length n where only log n letters are different from a
Texts of the type T = S

√
n, where |S| =

√
n

13 / 22

Compression for Maps

Problem formalization:
Graph G
Query “what is the shortest path from i to j in G?” should be
answered in O(|Dij |) time (proportional to the output)
Data structure should use o(|V |+ |E |) space for some
reasonable class of “regular” graphs

Do not go to the next slide
What compression method do you suggest for map

compression?

14 / 22

Compression for Maps

Problem formalization:
Graph G
Query “what is the shortest path from i to j in G?” should be
answered in O(|Dij |) time (proportional to the output)
Data structure should use o(|V |+ |E |) space for some
reasonable class of “regular” graphs

Do not go to the next slide
What compression method do you suggest for map

compression?

14 / 22

Kolmogorov Lower Bound

For the classical compression there is a natural lower bound for
any class of texts:

SIZE OF SOME COMPRESSED OBJECT IS GREATER THAN OR
EQUAL TO THE KOLMOGOROV COMPLEXITY OF THAT OBJECT

We can formulate a similar proposition for data structures
compression:

SIZE OF SOME COMPRESSED DATA STRUCTURE IS GREATER
THAN OR EQUAL TO THE KOLMOGOROV COMPLEXITY OF THE
LIST OF ALL QUERY ANSWERS

15 / 22

Kolmogorov Lower Bound

For the classical compression there is a natural lower bound for
any class of texts:

SIZE OF SOME COMPRESSED OBJECT IS GREATER THAN OR
EQUAL TO THE KOLMOGOROV COMPLEXITY OF THAT OBJECT

We can formulate a similar proposition for data structures
compression:

SIZE OF SOME COMPRESSED DATA STRUCTURE IS GREATER
THAN OR EQUAL TO THE KOLMOGOROV COMPLEXITY OF THE
LIST OF ALL QUERY ANSWERS

15 / 22

Compressibility of Query Problems

Let us define compressibility for query problems as the
average ratio between the kolmogorov complexity of the list of
all query answers and the kolmogorov complexity of the data
through all data instances

16 / 22

Part II

What should be done now?

Mathematical open problems?

17 / 22

Open Problems

Solve suffix tree compression in general

Solve suffix tree compression for two specific cases
Theoretical evaluation (pick a regularity definition, prove
some upper bounds on the compressed size) for
DAG-method applied to membership problem
Find compressibility of some famous query problems

18 / 22

Open Problems

Solve suffix tree compression in general
Solve suffix tree compression for two specific cases

Theoretical evaluation (pick a regularity definition, prove
some upper bounds on the compressed size) for
DAG-method applied to membership problem
Find compressibility of some famous query problems

18 / 22

Open Problems

Solve suffix tree compression in general
Solve suffix tree compression for two specific cases
Theoretical evaluation (pick a regularity definition, prove
some upper bounds on the compressed size) for
DAG-method applied to membership problem

Find compressibility of some famous query problems

18 / 22

Open Problems

Solve suffix tree compression in general
Solve suffix tree compression for two specific cases
Theoretical evaluation (pick a regularity definition, prove
some upper bounds on the compressed size) for
DAG-method applied to membership problem
Find compressibility of some famous query problems

18 / 22

Learn More!

Find relevant papers (idea is natural — something has been
already done)
Make a list of “query problems”
We know what is a “regular text” (entropy, short
automata-description, low kolmogorov complexity...). But
what do we mean by “regular” for sets, binary relations, ... ?
Get a feedback from industry people

19 / 22

References (1/2)

Further results will appear at
http://logic.pdmi.ras.ru/~yura

References:
Giorgio Busatto, Markus Lohrey, Sebastian Maneth
Efficient Memory Representation of XML Documents
http://inf.informatik.uni-stuttgart.de/fmi/ti/personen/Lohrey/05-XML.pdf

Yury Lifshits
Solving Classical String Problems on Compressed Texts
http://xxx.lanl.gov/pdf/cs.DS/0604058

JK Min, MJ Park, CW Chung
XPRESS: a queriable compression for XML data
http://islab.kaist.ac.kr/ jkmin/papers/SIGMOD03-min.pdf

Wojtech Rytter
Application of Lempel-Ziv factorization to the approximation of grammar-based
compression
http://citeseer.ist.psu.edu/rytter02application.html

20 / 22

References (2/2)

More references:
David Salomon
Data Compression: The Complete Reference (2004)
http://books.google.com/books?id=FlWjiShUst0C

Images sources:
http://www.cs.rochester.edu and http://plus.maths.org/

21 / 22

Main points

Today we learn:
New field and new challenge: small size together with the
fast query time

The only technique so far: replace trees by DAGs
Plenty of work to be done. Join this research!

Questions?

22 / 22

Main points

Today we learn:
New field and new challenge: small size together with the
fast query time
The only technique so far: replace trees by DAGs

Plenty of work to be done. Join this research!

Questions?

22 / 22

Main points

Today we learn:
New field and new challenge: small size together with the
fast query time
The only technique so far: replace trees by DAGs
Plenty of work to be done. Join this research!

Questions?

22 / 22

Main points

Today we learn:
New field and new challenge: small size together with the
fast query time
The only technique so far: replace trees by DAGs
Plenty of work to be done. Join this research!

Questions?

22 / 22

Main points

Today we learn:
New field and new challenge: small size together with the
fast query time
The only technique so far: replace trees by DAGs
Plenty of work to be done. Join this research!

Questions?

22 / 22

	Compression for Specific Problems
	Membership Test
	Pattern Matching
	Graph Navigation
	Kolmogorov Lower Bound

	Workflow for Further Research
	Summary

