Combinatorial Approach to Data Mining

Yury Lifshits

Caltech

http://yury.name

MIT, 29 November 2007

Based on joint work with Navin Goyal, Benjamin Hoffmann, Dirk Nowotka, Hinrich Schütze and Shengyu Zhang

Nearest neighbors

Preprocess a set *S* such that given any *q* the closest point in *S* to *q* can be found quickly

Near-duplicates

Find all pairs of objects with distance below some threshold in subquadratic time

Navigability design

Construct a graph such that local routing is leading to target in logarithmic number of steps

Clustering

Split a set to *k* parts minimizing in-cluster distances

Nearest neighbors

Preprocess a set *S* such that given any *q* the closest point in *S* to *q* can be found quickly

Near-duplicates

Find all pairs of objects with distance below some threshold in subquadratic time

Navigability design

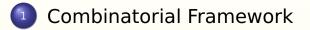
Construct a graph such that local routing is leading to target in logarithmic number of steps

Clustering

Split a set to *k* parts minimizing in-cluster distances

Today: distances are not given, triangle inequality is not satisfied

Outline



2 Results: New Algorithms

One Proof: Visibility Graph

Open Problems

1

Combinatorial Framework

Comparison Oracle

- Dataset *p*₁, . . . , *p*_n
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

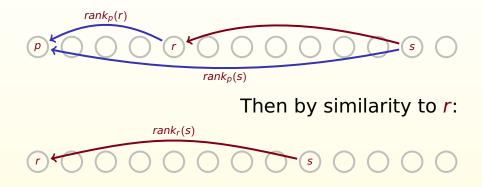
Who is closer to A: B or C?

Disorder Inequality

Sort all objects by their similarity to *p*:

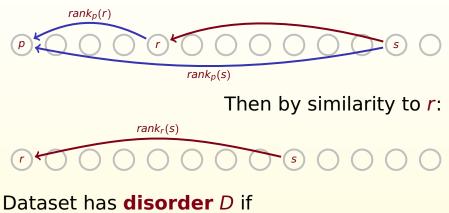
Disorder Inequality

Sort all objects by their similarity to *p*:



Disorder Inequality

Sort all objects by their similarity to *p*:



 $\forall p, r, s: rank_r(s) \leq D(rank_p(r) + rank_p(s))$

Combinatorial Framework

Comparison oracle Who is closer to $A^{\cdot} B$ or C? Disorder inequality $rank_{r}(s) \leq D(rank_{p}(r) + rank_{p}(s))$

Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to "local density" of a dataset

Combinatorial Framework: Pro & Contra

Advantages:

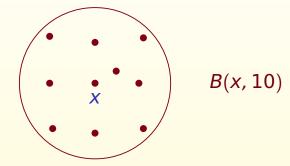
- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to "local density" of a dataset

Limitation: worst-case form of disorder inequality

Combinatorial Ball

$$B(x,r) = \{y : \operatorname{rank}_x(y) < r\}$$

In other words, it is a subset of dataset S: the object x itself and r - 1 its nearest neighbors

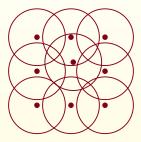


Combinatorial Net

A subset $R \subseteq S$ is called a **combinatorial** *r*-net iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R$, s.t. rank_x(y) < r.

Separation: $\forall x_i, x_j \in R$, rank_{xi}(x_j) $\geq r$ OR rank_{xi}(x_i) $\geq r$

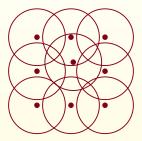


Combinatorial Net

A subset $R \subseteq S$ is called a **combinatorial** *r*-net iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R$, s.t. rank_x(y) < r.

Separation: $\forall x_i, x_j \in R$, rank_{xi}(x_j) $\geq r$ OR rank_{xi}(x_i) $\geq r$



How to construct a combinatorial net? What upper bound on its size can we guarantee?

Disorder vs. Others

- If expansion rate is c, disorder constant is at most c²
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of "doubling effect"

Results: Combinatorial Algorithms

Basic Data Structure

Combinatorial nets: For every $0 \le i \le \log n$, construct a $\frac{n}{2^i}$ -net

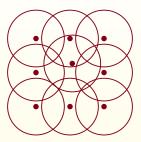
Basic Data Structure

Combinatorial nets: For every $0 \le i \le \log n$, construct a $\frac{n}{2^i}$ -net

Pointers, pointers, pointers:

- Direct & inverted indices: links between centers and members of their balls
- Cousin links: for every center keep pointers to close centers on the same level
- Navigation links: for every center keep pointers to close centers on the next level

Fast Net Construction



Theorem

Combinatorial nets can be constructed in $O(D^7 n \log^2 n)$ time

Nearest Neighbor Search

Assume $S \cup \{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

• Preprocessing: $\mathcal{O}(D^7 n \log^2 n)$

• Search: $\mathcal{O}(D^4 \log n)$

Nearest Neighbor Search

Assume $S \cup \{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

- Preprocessing: $\mathcal{O}(D^7 n \log^2 n)$
- Search: $\mathcal{O}(D^4 \log n)$

Variations:

- O(n) size of data structure, still $poly(D) \log n$ search
- Randomized algorithm, $\mathcal{O}(D \log n)$ search

Navigability Design

Local routing in a graph:

Given target description and the current node *p* a message is forwarded via one of the out-going edges from *p*

Navigability Design

Local routing in a graph:

Given target description and the current node *p* a message is forwarded via one of the out-going edges from *p*

Design task:

Given a collection of points $S = \{p_1, \dots, p_n\}$ construct a low-degree graph and rules for local decisions such that given a start $p \in S$ and a target qthe nearest neighbor of q in Scan be reached in a small number of steps

Visibility Graph

Theorem

- Any dataset S has a visibility graph:
 - poly(D)n log² n construction time
 - $\mathcal{O}(D^4 \log n)$ out-degrees
 - Naïve greedy routing deterministically reaches exact nearest neighbor of q in at most log n steps

Near-Duplicates

Assume, comparison oracle can also tell us whether $\sigma(x, y) > T$ for some similarity threshold T

Theorem

All pairs with over-T similarity can be found deterministically in time

 $poly(D)(n \log^2 n + |Output|)$

Clustering

Combinatorial objective function for *k*-clustering:

Minimize

Clustering

Combinatorial objective function for *k*-clustering:

Minimize

$$\sum_{i \in [k]} \sum_{x, y \in C_i} rank_x(y)$$

Theorem A 32D³-approximate clustering can be constructed in time poly(D)n log² n

3 One Proof: Visibility Graph

Problem Statement

Input:

Dataset $S = \{p_1, \dots, p_n\}$ Represented by comparison oracle Having disorder constant D

Problem Statement

Input:

Dataset $S = \{p_1, \dots, p_n\}$ Represented by comparison oracle Having disorder constant D

Design Task:

Connect every object with few others Set local rules for routing

Problem Statement

Input:

Dataset $S = \{p_1, \dots, p_n\}$ Represented by comparison oracle Having disorder constant D

Design Task:

Connect every object with few others Set local rules for routing

Routing Requirement: Given a target point q and a starting point $p \in S$ the nearest neighbor of q in S should be reached by a few steps in the graph

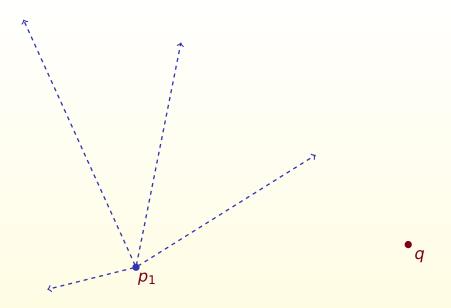
Greedy Routing

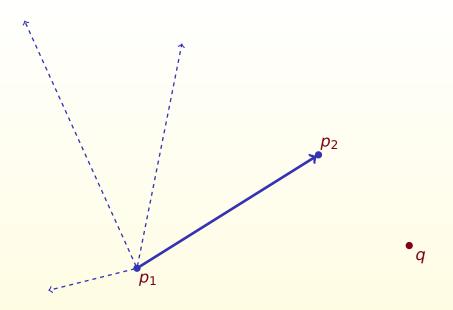
- Use oracle to compare distances to *q* from current point *p* and from all its neighbors in the graph
- If p is not the closet one, move to the one which is the closest
- Otherwise, STOP and return p

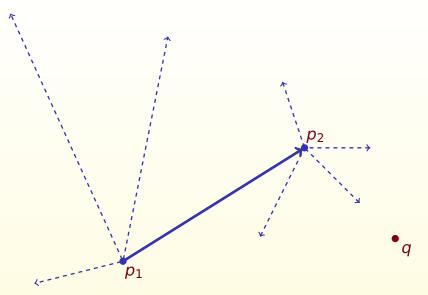
Greedy Routing

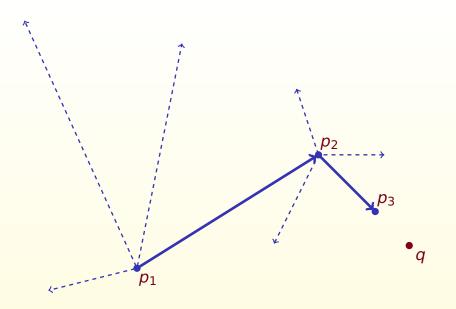
- Use oracle to compare distances to *q* from current point *p* and from all its neighbors in the graph
- If p is not the closet one, move to the one which is the closest
- Otherwise, STOP and return p

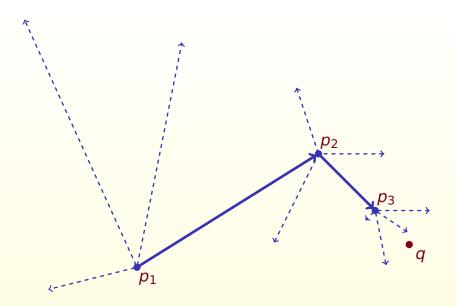
Also known as local search, hill climbing etc.

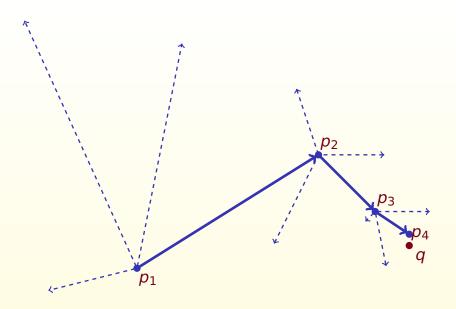












Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

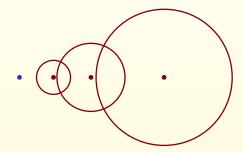
 $rank_p(c_i) \leq 3D^2 \frac{\pi}{2^i}$

Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

 $rank_p(c_i) \le 3D^2 \frac{n}{2^i}$

Interpretation: the farther you are the larger radius you need to be visible

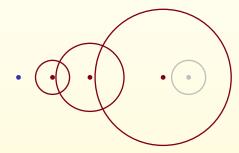


Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

 $rank_p(c_i) \le 3D^2 \frac{n}{2^i}$

Interpretation: the farther you are the larger radius you need to be visible



Analysis

Three claims:

- Out-degrees are $\mathcal{O}(D^4 \log n)$
- After *i* steps we reach a point that is at least as close to *q* as the best center in ⁿ/_{2ⁱ}-net
- Visibility graph can be constructed in poly(D)n log² n time

Bound on Degrees

Connecting *p* with centers of *r*-net:

- By construction, centers have ranks at most 3D²r to p
- There are disjoint $\frac{r}{2D}$ balls around these centers
- Members of these disjoint balls have $\mathcal{O}(D^3)r$ rank to p
- Thus, there are at most $\mathcal{O}(D^4)$ such centers

Fast Convergence

After *i* steps we reach a point that is at least as close to *q* as the best point in $\frac{n}{2^i}$ -net

Inductive proof. From *i* to i + 1:

• For the best center in *i*-th level $rank_q(c_i^*) \le Dr_i$. Similarly, c_{i+1}^* satisfies $rank_q(c_{i+1}^*) \le \frac{Dr_i}{2}$

Fast Convergence

After *i* steps we reach a point that is at least as close to *q* as the best point in $\frac{n}{2^i}$ -net

Inductive proof. From *i* to i + 1:

- For the best center in *i*-th level $rank_q(c_i^*) \le Dr_i$. Similarly, c_{i+1}^* satisfies $rank_q(c_{i+1}^*) \le \frac{Dr_i}{2}$
- From inductive conjecture: after *i* steps in a greedy walk the current point $p^{(i)}$ also has $rank_q(p^{(i)}) \leq Dr_i$

Fast Convergence

After *i* steps we reach a point that is at least as close to *q* as the best point in $\frac{n}{2^i}$ -net

Inductive proof. From *i* to i + 1:

- For the best center in *i*-th level $rank_q(c_i^*) \le Dr_i$. Similarly, c_{i+1}^* satisfies $rank_q(c_{i+1}^*) \le \frac{Dr_i}{2}$
- From inductive conjecture: after *i* steps in a greedy walk the current point $p^{(i)}$ also has $rank_q(p^{(i)}) \leq Dr_i$
- By disorder inequality $p^{(i)}$ is connected to c^*_{i+1} Therefore $p^{(i+1)}$ is at least as good as c^*_{i+1} is

Directions for Further Research

- Other problems in combinatorial framework:
 - Low-distortion embeddings
 - Closest pairs
 - Community discovery
 - Linear arrangement
 - Distance labelling
 - Dimensionality reduction
- What if disorder inequality has exceptions, but holds in average?
- Insertions, deletions, changing metric
- Metric regularizations
- Experiments & implementation

Call for Feedback

- What do you like the most in these results?
- What is the most important question for further studies?
- Relevant literature?

Call for Feedback

- What do you like the most in these results?
- What is the most important question for further studies?
- Relevant literature?
- Are you interested in further discussions?
 I am around this evening and the whole Friday.

Call for Feedback

- What do you like the most in these results?
- What is the most important question for further studies?
- Relevant literature?
- Are you interested in further discussions?
 I am around this evening and the whole Friday.

Another talk: YL, "Open Problems TO GO" Friday Nov 30, 4pm, 56-154, MIT Theory Reading Group

Sponsored Links

http://yury.name

http://simsearch.yury.name

Tutorial, bibliography, people, links, open problems

📔 Yury Lifshits and Shengyu Zhang

Similarity Search via Combinatorial Nets
http://yury.name/papers/lifshits2008similarity.pdf

- Navin Goyal, Yury Lifshits, Hinrich Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search http://yury.name/papers/goyal2008disorder.pdf
 - Benjamin Hoffmann, Yury Lifshits, Dirk Novotka Maximal Intersection Queries in Randomized Graph Models http://yury.name/papers/hoffmann2007maximal.pdf

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- Near-linear construction of combinatorial nets
- Nearest neighbor search in almost logarithmic time
- Deterministic detection of near-duplicates in subquadratic time
- Visibility graph: small degrees and deterministic convergence in log n steps

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- Near-linear construction of combinatorial nets
- Nearest neighbor search in almost logarithmic time
- Deterministic detection of near-duplicates in subquadratic time
- Visibility graph: small degrees and deterministic convergence in log n steps

Thanks for your attention! Questions?