Novel Approaches to Nearest

Neighbors
Random Walks. SEARCH Class.

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg
California Institute of Technology

August 2007

/27


http://yury.name

Outline

@ Welcome to nearest neighbors!

27



Outline

@ Welcome to nearest neighbors!

© Nearest Neighbors via Random Walks

2/27



Outline

@ Welcome to nearest neighbors!
© Nearest Neighbors via Random Walks

© Data Structure Complexity: SEARCH Class

2/27



Chapter |

Welcome to Nearest Neighbors!



Problem Statement

Search space: object domain U, similarity function o
Input: database S = {p1,...,p,} CU

Query: g€ U

Task: find argmax o(p;, q)
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Applications
Content-based retrieval

Spelling correction Searching for similar
DNA sequences Related pages web search
Concept matching

kNN classification rule

Nearest-neighbor interpolation Near-duplicate
detection Plagiarism detection
Computing co-occurrence similarity
Recommendation systems Personalized news
aggregation Behavioral targeting
Maximum likelihood decoding MPEG

compression
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Brief History

1908
1967
1973
1997

2006

2008

Voronoi diagram
kNN classification rule by Cover and Hart
Post-office problem posed by Knuth

The paper by Kleinberg, beginning of provable
upper/lower bounds

Similarity Search book by Zezula, Amato,
Dohnal and Batko

First International Workshop on Similarity
Search. Consider submitting!



Some Nearest Neighbor Solutions

Sphere Rectangle Tree Orchard’s Algorithm LAESA
k-d-B tree Geometric near-neighbor access tree
Excluded middle vantage point forest mvp-tree Fixed-height
fixed-queries tree  AESA Vantage-point
tree R*-tree Burkhard-Keller tree BBD tree
Navigating Nets voronoi tree Balanced aspect ratio tree  Metric tree
wee  M-tree Locality-Sensitive Hashing

ss-tree  R-tree Spatial approximation tree Multi-vantage

point tree Bisector tree Mb-tree
Generalized hyperplane tree
Hybrid tree Slim tree Spill Tree Fixed queries tree X-tree k—d

tree Baltree Quadtree Octree Post-office tree

27



Part |l

Disorder Inequality

This section represents joint work with Navin Goyal and
Hinrich Schitze
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Concept of Disorder

Sort all objects in database S by their similarity to p
Let rank,(s) be position of object s in this list
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Concept of Disorder
Sort all objects in database S by their similarity to p
Let rank,(s) be position of object s in this list

Disorder inequality for some constant D:
Vp,r,s € {q}US : rank,(s) < D-(rank,(r)+rank,(s))

Minimal D providing disorder inequality is called disorder
constant of a given set

For “regular’ sets in d-dimensional Euclidean space D ~ 291
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Ranwalk Informally (2/2)

Hierarchical greedy navigation:

@ Start at random city p;
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Ranwalk Informally (2/2)

Hierarchical greedy navigation:
@ Start at random city p;

© Among all airlines choose the one going most closely to g,
move there (say, to p»)

© Among all railway routes from p, choose the one going most
closely to g, move there (p3)

© Among all bus routes from p; choose the one going most
closely to g, move there (p4)

© Repeat this log n times and return the final city

Transport system: for level k choose ¢ random arcs to
& neighborhood
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Ranwalk Algorithm

Preprocessing:
@ For every point p in database we sort all other points by their
similarity to p
Data structure: n lists of n — 1 points each.

Query processing:
@ Step 0: choose a random point pg in the database.

© From k=1 to k = log n do Step k: Choose
D’ :=3D(loglog n + 1) random points from
min(n, 257)-neighborhood of p;_;. Compute similarities of

these points w.r.t. g and set p, to be the most similar one.

Q If rank, . (q) > D go to step 0, otherwise search the whole
D?-neighborhood of piog » and return the point most similar to
g as the final answer.
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Analysis of Ranwalk

Theorem
Assume that database points together with query point
S U{q} satisfy disorder inequality with constant D:

rank,(y) < D(rank,(x) + rank,(y)).

Then Ranwalk algorithm always answers nearest neighbor
queries correctly. It uses the following resources:
Preprocessing space: O(n?).

Preprocessing time: O(n*log n).

Expected query time: O(D log nloglog n + D?).
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Arwalk Algorithm

Preprocessing:

@ For every point p in database we sort all other points by their
similarity to p. For every level number k from 1 to log n we

store pointers to D’ = 3D(loglog n + log1/§) random points

within min(n, %) most similar to p points.

Query processing:
@ Step 0: choose a random point pg in the database.

@ From k=1 to k = logn do Step k: go by px_1 pointers of
level k. Compute similarities of these D’ points to g and set
px to be the most similar one.

© Return piog .
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Analysis of Algorithm

Theorem
Assume that database points together with query point
S U{q} satisfy disorder inequality with constant D:

ranky(y) < D(rank,(x) + rank,(y)).

Then for any probability of error 6 Arwalk algorithm
answers nearest neighbor query within the following
constraints:

Preprocessing space: O(nD log n(loglog n + log 1/6)).
Preprocessing time: O(n?log n).

Query time: O(D log n(loglog n + log1/9)).
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Future of Disorder (1/2)

Average disorder. If disorder inequality does not hold for
a small fraction of pairs, how should we
modify our algorithm?
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Future of Disorder (1/2)

Average disorder. If disorder inequality does not hold for
a small fraction of pairs, how should we
modify our algorithm?

Improving our algorithms. Is it possible to combine
advantages of Ranwalk and Arwalk? Does
there exist a deterministic algorithm with
sublinear search time utilizing small disorder
assumption? E.g., can we use expanders for
derandomization?
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Future of Disorder (2/2)

Disorder of random sets. Compute disorder values for
some modelling examples. For example,
consider n random points on d-dimensional
sphere
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Future of Disorder (2/2)

Disorder of random sets. Compute disorder values for
some modelling examples. For example,
consider n random points on d-dimensional
sphere

Lower bounds. Is it possible to prove lower bounds on
preprocessing and query complexities in some
“black-box” model of computation?
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Data Structure Complexity:
SEARCH Class



Inclusions with Preprocessing (1/2)

Input
Family F of subsets of U

Query task
Given a set f,.,, C U to decide
whether df € F:  fhen CF

Constraints
Data storage after preprocessing poly(|F| + |U|)
Time for query processing poly(|U|)
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Inclusions with Preprocessing (2/2)
Reformulation in SAT style:

Input
Formula F in DNF with n variables
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Given an assignment x to evaluate F(x)

Constraints
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Time for query processing poly(n)
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“NP Analogue” for Search Problems

Every problem in SEARCH class is characterized by
poly-time computable Turing Machine M:

Input
Strings x1, ..., X, Ix;| = m

Query task
Given string y of length m to answer
whether 3i : M(x;, y) = yes
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Input
Strings xi, ..., Xy, |x;| = m

Query task
Given string y of length m to answer
whether 3i : M(x;, y) = yes

Tractable solution
Preprocessing in poly(m, n) space

Query processing in poly(m,log n) time
with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?



Complete problems in SEARCH (1/2)

Program Search problem:

Input
Turing machines P; ..., P,

Query task
Given string y of length m to answer
whether Ji : P;(y) = yes after at most m steps
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Complete problems in SEARCH (2/2)

Parallel Run problem:

Input
X1...,Xp
Query task

Given poly-time computable P to answer
whether 3i : P(x;) = yes
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NN Proofs?

NN-proof system:

@ Fix some family of basic statements about points in
multidimensional space and some proof system

e Can we compute poly(|S|) statements about points
of database Ssuch that for any query g and any real
nearest neighbor pyy € S there is a logarithmic
proof from precomputed statements that indeed
pnn IS nearest point is S to g
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e Can we compute poly(|S|) statements about points
of database Ssuch that for any query g and any real
nearest neighbor pyy € S there is a logarithmic
proof from precomputed statements that indeed
pnn IS nearest point is S to g

Do such an NN proof system exist?
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Highlights

@ Random walk provide logarithmic nearest neighbor
search for bounded disorder sets
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Highlights

@ Random walk provide logarithmic nearest neighbor
search for bounded disorder sets

@ SEARCH class: is it tractable?

@ Do NN proof systems exist?

Thanks for your attention! Questions?
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