
New Algorithms on Compressed Texts

Yury Lifshits

Steklov Institute of Mathematics, St.Petersburg, Russia
yura@logic.pdmi.ras.ru

Tallinn
20/03/2006

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 1 / 23

FCPM: Problem Description

Fully Compressed Pattern Matching (FCPM)

INPUT: Compressed strings P and T
OUTPUT: Yes/No (whether P is a substring in T?)

Example

Text: abaababaabaab
a
Pattern: baba

We know only
compressed representation
of P and T

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 2 / 23

Outline of the Talk

1 Processing Compressed Texts: Bird’s Eye View

2 Fully Compressed Pattern Matching: Idea of a New Algorithm
Idea of a new algorithm
F Detailed description

3 More Algorithms and Some Negative Results

4 Conclusions and Open Problems

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 3 / 23

Processing Compressed Text

Central idea

If some text is highly compressible,
then it contains long identical segments

and therefore it is likely that we can solve
some problems more efficiently than in general case

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 4 / 23

Motivation

Reasons for algorithms on compressed texts:

Potentially faster than “unpack-and-solve”

Lower memory requirements

Theoretical applications: word equations in PSPACE, pattern
matching in message sequence charts

Real data with high level of repetitions:

Genomes

Internet logs, any statistical data

Automatically generated texts

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 5 / 23

Straight-Line Programs

Straight-line program (SLP) is a
Context-free grammar generating exactly one string
Two types of productions: Xi → a and Xi → XpXq

Most of practically used compression algorithms (Lempel-Ziv family,
run-length encoding...) can be efficiently translated to SLP

Example

abaababaabaab

X1 → b, X2 → a
X3 → X2X1, X4 → X3X2

X5 → X4X3, X6 → X5X4

X7 → X6X5

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 6 / 23

Important Related Results

Algorithms on compressed texts:

Amir et al.’94: Compressed Pattern Matching

Ga̧sieniec et al.’96: Regular Language Membership

The following problems are hard for compressed texts:

Lohrey’04: Context-Free Language Membership

Berman et al.’02: Two-dimensional Compressed Pattern
Matching

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 7 / 23

FCPM: Problem Description

Fully Compressed Pattern Matching (FCPM)

INPUT: SLP-compression of P and of T
OUTPUT: Yes/No (whether P is a substring in T?)

Let m and n be the sizes of straight-line programs generating
correspondingly P and T

Ga̧sieniec et al.’96: O((n + m)5log 3|T |) algorithm

Miyazaki et al.’97: O(n2m2) algorithm

Lifshits’06: O(n2m) algorithm

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 8 / 23

Basic Lemma

Notation:
Position = place between neighbor characters.
Occurrence = starting position of a substring

Lemma

All occurrences of P in T touching any given position form a single
arithmetical progression

2 4 6

P P P

Common
position

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 9 / 23

AP-table

Let P1, . . . , Pm and T1, . . . , Tn be the compression symbols.

A cut is a merging position for Xi = XrXs .

AP-table:
For every 1 ≤ i ≤ m, 1 ≤ j ≤ n
let AP[i , j] be a code
of ar.pr. of occurrences of Pi in Tj

that touches the cut of Tj

a

P1

...

Pm

T1
. . . Tn

Pi

Tj

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 10 / 23

Two Claims

Claim 1: We can solve all variants of FCPM from AP-table in linear
time:

Find the first occurrence

Count the number of all occurrences

Check whether there is an occurrence from the given position

Compute a “compressed” representation of all occurrences

Claim 2: We can compute the whole AP-table by dynamic
programming method using O(n) time for every element

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 11 / 23

Getting the answer

AP-table:
for every 1 ≤ i ≤ m, 1 ≤ j ≤ n let AP[i , j] be a code
of ar.pr. of occurrences of Pi in Tj

that touches the cut of Tj

How to check whether P occurs in T from AP-table?

Answer:
P occurs in T iff there is j such that AP[m, j] is nonempty

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 12 / 23

Computing AP-table

Order of computation:
from j=1 to n do

from i=1 to m do
compute AP[i,j]

Basis: one-letter Pi or one-letter Tj

Induction step: Pi and Tj are composite texts

We design a special auxiliary procedure that extracts useful
information from already computed part of AP-table for computing a
new element AP[i , j]

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 13 / 23

Auxiliary Procedure: Local PM

LocalPM(i , j , [α, β]) returns occurrences of Pi in Tj inside the
interval [α, β]

Important properties:

Local PM uses values AP[i,k] for 1 ≤ k ≤ j

It is defined only when |β − α| ≤ 3|Pi |
It works in time O(n)

The output of Local PM is a pair of ar.pr.

Proposition: answer of Local PM indeed could be always
represented by pair of ar.pr.

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 14 / 23

Computing the next element

Let Pi = PrPs , and let |Pr | ≥ |Ps |

Naive approach

1 Compute all occurrences of Pr around cut of Tj

2 Compute all occurrences of Ps around cut of Tj

3 Shift the latter by |Pr | and intersect

Remark: we can do only step 1 by Local PM
Idea: not all occurrences of Ps but only these that are starting at the
ends of Pr ones.

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 15 / 23

Computing the next element II

Some blackboard explanation...

1 Take the first ar.pr of Pr occurrences

2 Divide all ends to “continental” and “seaside”

3 Check one continental

4 Check all seaside (by Local PM)

5 The same for the second ar.pr.

Total complexity:
Local PM for Pr

+ 2 Local PM for Ps

+ 2 point checks for Ps

O(n)

We are done! (Modulo basic computation of AP-table and realization
of Local PM)
Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 16 / 23

Covers and Periods

A period of a string T is a string W such that T is a prefix of W k for
some integer k

T

W W W

A cover of a string T is a string C such that any character in T is
covered by some occurrence of C in T

T

C C C

Compressed Periods/Covers: given a compressed string T , to find the

shortest period/cover and compute a “compressed” representation of all

periods/covers
Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 17 / 23

Subsequence Problems

Compressed Window Subsequence: given a pattern P, a compressed
string T , and an integer k, to determine whether P is a scattered
subsequence in some window of length k in the text T

Example

T : abaa|babaab|aab
P: babab
k : 6

Fully Compressed Subsequence Problem: given compressed strings P
and T , to determine whether P is a scattered subsequence in T

Example

T : abaababaabaab
P: baabaabaab

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 18 / 23

Hamming Distance and LCS

Compressed Hamming Distance: given compressed strings T1

and T2, to compute Hamming distance (the number of characters
which differ) between them

Example

T1: abaababaabaab HD(T1,T2) = 7
T2: baababababaab

Compressed LCS: given compressed strings T1 and T2, to compute
the length of the longest common subsequence

Example

T1: abaababaabaab LCS (T1,T2) = 12
T2: baababababaab

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 19 / 23

Fingerprint Table

A fingerprint is a set of used characters of any substring of T . A
fingerprint table is the set of all fingerprints.

Example

Text: abacaba
Fingerprint Table: ∅{a}{b}{c}{a,b}{a,c}{a,b,c}

Compressed Fingerprint Table: given a compressed string T , to
compute a fingerprint table

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 20 / 23

Check Your Intuition

Which of the following problems have polynomial algorithms?

1 Periods

2 Longest Common Subsequence

3 Hamming distance

4 Covers

5 Fingerprint Table

6 Compressed Window Subsequence

7 Fully Compressed Subsequence Problem

Answer: red-on-grey problems have polynomial algorithms,
black ones are NP-hard

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 21 / 23

Summary

Main points:

New field: algorithms working on compressed objects (including
strings) without unpacking them

New algorithm: fully compressed pattern matching in cubic time

More algorithms: covers, periods, window subsequence,
fingerprint table. But LCS, Hamming distance, FCSP are
NP-hard.

Open Problems

To construct a O(nm log |T |) algorithm for Fully Compressed
Pattern Matching

To construct O(nm) algorithms for edit distance, where n is the
length of T1 and m is the compressed size of T2

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 22 / 23

Last Slide

Contact: Yury Lifshits
Email: yura@logic.pdmi.ras.ru
Home page: http://logic.pdmi.ras.ru/~yura/

Yu. Lifshits
Solving Classical String Problems on Compressed Texts.
Draft, 2006.

Yu. Lifshits and M. Lohrey
Querying and Embedding Compressed Texts.
to be submitted, 2006.

P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich
Window Subsequence Problems for Compressed Texts.
accepted to “Computer Science in Russia”, 2006.

Thanks for attention. Questions?

Yury Lifshits (Steklov Inst. of Math) New Algorithms on Compressed Texts Tallinn’06 23 / 23

	Processing Compressed Texts: Bird's Eye View
	Fully Compressed Pattern Matching: Idea of a New Algorithm
	Idea of a new algorithm
	 Detailed description

	More Algorithms and Some Negative Results
	Conclusions and Open Problems

